首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The efficiency of physical separation of inclusion bodies from cell debris is related to cell debris size and inclusion body release and both factors should be taken into account when designing a process. In this work, cell disruption by enzymatic treatment with lysozyme and cellulase, by homogenization, and by homogenization with ammonia pretreatment is discussed. These disruption methods are compared on the basis of inclusion body release, operating costs, and cell debris particle size. The latter was measured with cumulative sedimentation analysis in combination with membrane-associated protein quantification by SDS-PAGE and a spectrophotometric peptidoglycan quantification method. Comparison of the results obtained with these two cell debris quantification methods shows that enzymatic treatment yields cell debris particles with varying chemical composition, while this is not the case with the other disruption methods that were investigated. Furthermore, the experiments show that ammonia pretreatment with homogenization increases inclusion body release compared to homogenization without pretreatment and that this pretreatment may be used to control the cell debris size to some extent. The enzymatic disruption process gives a higher product release than homogenization with or without ammonia pretreatment at lower operating costs, but it also yields a much smaller cell debris size than the other disruption process. This is unfavorable for centrifugal inclusion body purification in this case, where cell debris is the component going to the sediment and the inclusion body is the floating component. Nevertheless, calculations show that centrifugal separation of inclusion bodies from the enzymatically treated cells gives a high inclusion body yield and purity.  相似文献   

2.
Measurements of size distributions are provided for the breakage of commercial packed bakers' yeast cells as a function of operating pressure and number of passes through a Manton Gaulin high-pressure homogenizer. A two parameter model was developed, based upon the use of a Boltzmann function, to simulate the changes in size distribution that accompany the cell breakage process. The effects of operating pressure and number of passes are incorporated in the model and the result is used to simulate the particle size distribution of the cell homogenate. The results show that there is little breakage below a threshold pressure of 115 bar and above which breakage is critically dependent upon the pressure and number of passes through the homogenizer. The analysis provides a means of studying the efficiency of centrifugation that may follow cell disruption and provides the basis for further studies of size distribution changes accompanying cell disruption. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Experiments were carried out aimed at establishing the effects of equipment scale down on the disruption of Baker's yeast cells in high pressure homogenisers. Data are reported on the cell debris particle size distribution (PSD) and on total protein release as a function of the applied pressure for two valve geometries and three scales of operation covering flow rates of 28, 60 and 280 L/h. A comparison of the results from the experiments indicates that over the range of parameters investigated both the total protein release and the cell debris PSDs are independent of valve geometry and flow rate through the homogeniser. These observations are discussed in the light of relevant previous publications. The cell debris PSDs have been simulated by using a recently published model and the total protein release data are described by the well-established Hetherington expression (Hetherington et al., 1971). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 642-649, 1997.  相似文献   

4.
Summary The intracellular accumulation of ethanol in yeast and its potential effects on growth and fermentation have been topics of controversy for the past several years. The determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate aqueous cell volume was used to examine the question of intracellular ethanol accumulation. An intracellular accumulation of ethanol inSaccharomyces cerevisiae was observed during the early stages of fermentation. However, as fermentation continued, the intracellular and extracellular concentrations of ethanol became similar. Increasing the osmotic pressure of the medium with glucose or sorbitol was observed to cause an increase in the intracellular ethanol concentration. Associated with this was a decrease in yeast growth and fermentation rates. In addition, increasing the osmotic pressure of the medium was observed to cause an increase in glycerol production. Supplementation of the media with excess peptone, yeast extract, magnesium sulfate and potassium phosphate was found to relieve the detrimental effects of high osmotic pressure. Under these conditions, though, no effect on the intracellular and extracellular ethanol distribution was observed. These results indicate that nutrient limitation, and not necessarily intracellular ethanol accumulation, plays a key role during yeast fermentations in media of high osmolarity.  相似文献   

5.
Taking continuous ethanol fermentation with the self‐flocculating yeast SPSC01 under very high concentration conditions as an example, the fermentation performance of the yeast flocs and their metabolic flux distribution were investigated by controlling their average sizes at 100, 200, and 300 µm using the focused beam reflectance online measurement system. In addition, the impact of zinc supplementation was evaluated for the yeast flocs at the size of 300 µm grown in presence or absence of 0.05 g L?1 zinc sulfate. Among the yeast flocs with different sizes, the group with the average size of 300 µm exhibited highest ethanol production (110.0 g L?1) and glucose uptake rate (286.69 C mmol L?1 h?1), which are in accordance with the increased flux from pyruvate to ethanol and decreased flux to glycerol. And in the meantime, zinc supplementation further increased ethanol production and cell viability comparing with the control. Zinc addition enhanced the carbon fluxes to the biosynthesis of ergosterol (28.6%) and trehalose (43.3%), whereas the fluxes towards glycerol, protein biosynthesis, and tricarboxylic acid cycle significantly decreased by 37.7%, 19.5%, and 27.8%, respectively. This work presents the first report on the regulation of metabolic flux by the size of yeast flocs and zinc supplementation, which provides the potential for developing engineering strategy to optimize the fermentation system. Biotechnol. Bioeng. 2010;105: 935–944. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Expanded bed adsorption (EBA) is an integrative step in downstream processing allowing the direct capture of target proteins from cell-containing feedstocks. Extensive co-adsorption of biomass, however, may hamper the application of this technique. The latter is especially observed at anion exchange processes as cells or cell debris are negatively charged under common anion exchange conditions. The restrictions observed under these conditions are, however, directly related to processing steps prior to fluidised bed application. In this study, it could be shown that the effective surface charge of cell debris obtained during homogenisation is closely related to the debris size and thus to the homogenisation method and conditions. The amount and thus effect of cells binding to the adsorbent could be significantly decreased when optimising the homogenisation step not only towards optimal product release but towards a reduction of debris size and charge. The lower size and charge of the debris results not only in a reduced retention probability but also, in a lower collision probability between debris and adsorbent. The applicability was shown in an example where the homogenisation conditions of E. coli were optimised towards EBA applications. In a previous report (Reichert et al., 2001) studying the suitability of EBA for the capture of formate dehydrogenate from E. coli homogenate the pseudo affinity resin Streamline Red was identified as the only suitable adsorbent. The new approach, however, led to a system where anion exchange as capture step became possible, however, to the cost of binding capacity.  相似文献   

7.
The influence of matrix properties and operating conditions on the performance in fluidized-bed adsorption has been studied using Streamline diethyl-aminoethyl (DEAE), an ion exchange matrix based on quartz-weighted agarose, and bovine serum albumin (BSA) as a model protein. Three different particle size fractions (120-160 mum, 120-300 mum, and 250-300 mum) were investigated. Dispersion in the liquid phase was reduced when particles with a wide size distribution were fluidized compared to narrow particle size distributions. When the mean particle diameter was reduced, the breakthrough capacities during frontal adsorption were enlarged due to a shorter diffusion path length within the matrix. At small particle diameters the effect of film mass transfer became more relevant to the adsorption performance in comparison to larger particles. Therefore matrices designed for fluidized-bed adsorption should have small particle diameter and increased mean particle density to ensure small diffusion path length in the particle and a high interstitial velocity to improve film mass transfer. Studies on the influence of sedimented matrix height on axial mixing showed an increased Bodenstein number with increasing bed length. Higher breakthrough capacities were also found for longer adsorbent beds due to reduced dispersion and improved fluid and particle side mass transfer. With increasing bed height the influence of flow rate on breakthrough capacity was reduced. For a settled bed height of 50 cm breakthrough capacities of 80% of the equilibrium capacity for flow rates varying from 3 to 9 cm/min could be achieved. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 54-64, 1997.  相似文献   

8.
Cell culture media used in CHO-based biologic processes are typically sterile filtered to prevent microbial contamination prior to inoculation. In this study, the impact of common sterile filter throughput on a different, commercially available cell culture media was evaluated from the intermediate-adsorption fouling model of the filtration model. The key particle size range for optimum filter performance was discussed and identified by measuring the submicron order particle size distribution. It may be possible to predict the performance of filter capacity with size-exclusive separation by understanding the media particle counts and size distribution.  相似文献   

9.
ABSTRACT: BACKGROUND: Very high gravity (VHG) fermentation using medium in excess of 250 g/L sugars for more than 15 % (v) ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP) during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. RESULTS: Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 [PLUS-MINUS SIGN] 3.1, 252 [PLUS-MINUS SIGN] 2.9 and 298 [PLUS-MINUS SIGN] 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at [MINUS SIGN]100 mV, ethanol fermentation with the high gravity (HG) media containing glucose of 201 [PLUS-MINUS SIGN] 3.1 and 252 [PLUS-MINUS SIGN] 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 [PLUS-MINUS SIGN] 1.3 and 120.0 [PLUS-MINUS SIGN] 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 [PLUS-MINUS SIGN] 0.4 and 17.0 [PLUS-MINUS SIGN] 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 [PLUS-MINUS SIGN] 1.8 g/L ethanol was produced at 72 h when ORP was controlled at [MINUS SIGN]150 mV for the VHG fermentation with medium containing 298 [PLUS-MINUS SIGN] 3.8 g/L glucose, since yeast cell viability was improved more significantly. CONCLUSIONS: No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at [MINUS SIGN]150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG ethanol fermentation performance. On the other hand, controlling ORP at [MINUS SIGN]100 mV stimulated yeast growth and enhanced ethanol production under the HG conditions. Moreover, the ORP profile detected during ethanol fermentation with the flocculating yeast was less fluctuated, indicating that yeast flocculation could attenuate the ORP fluctuation observed during ethanol fermentation with non-flocculating yeast.  相似文献   

10.
Aims:  To see the possibility of particle size distribution analyser (PSDA) in detecting concentration of lactobacillus contaminants in yeast fermentation.
Methods and Results:  A PSDA was used to rapidly determine the size and concentration of lactobacillus and Saccharomyces cerevisiae . Data showed that the aerodynamic diameters of Lactobacillus casei and S. cerevisiae cells were around 0·63 and 2·9 μm, respectively, with both cultures showing a linear relationship between cell density and particle count on a size distribution curve of PSDA. In addition, Lactobacillus fermentum showed high similarity in bacterial size distribution and particle count numbers with L. casei . The PSDA also rapidly detected (within 1 min) the cell concentrations of S. cerevisiae and L. casei in a mixed sample with different concentration ratios with 107–109 cells ml−1 of detection range.
Conclusions:  PSDA was demonstrated to be useful for the rapid detection of lactobacillus and S. cerevisiae concentrations.
Significance and Impact of the Study:  This is the first report concerning PSDA to detect the concentration of bacteria and yeast. This method can be useful in the actual field during ethanol fermentation because of relatively easy handling and rapid detection.  相似文献   

11.
12.
The effect of pressure on the capture of a substrate alcohol by yeast alcohol dehydrogenase is biphasic. Solvent isotope effects accompany both phases and are expressed differently at different pressures. These differences allow the extraction of an inverse intrinsic kinetic solvent isotope effect of 1.1 (i.e., (D(2(O)))V/K = 0.9) accompanying hydride transfer and an inverse equilibrium solvent isotope effect of 2.6 (i.e., (D(2(O)))K(s) = 0.4) accompanying the binding of nucleotide, NAD(+). The value of the kinetic effect is consistent with a reactant-state E-NAD(+)-Zn-OH(2) having a fractionation factor of phi approximately 0.5 for the zinc-bound water in conjunction with a transition-state proton exiting a low-barrier hydrogen bond with a fractionation factor between 0.6 and 0.9. The value of the equilibrium effect is consistent with restrictions of torsional motions of multiple hydrogens of the enzyme protein during the conformational change that accompanies the binding of NAD(+). The absence of significant commitments to catalysis accompanying the kinetic solvent isotope effect means that this portion of the proton transfer occurs in the same reactive step as hydride transfer in a concerted chemical mechanism. The success of this analysis suggests that future measurements of solvent isotope effects as a function of pressure, in the presence of moderate commitments to catalysis, may yield precise estimates of intrinsic solvent isotope effects that are not fully expressed on capture at atmospheric pressure.  相似文献   

13.
Summary Commercially available maltodextrins were subjected to high pressure size exclusion chromatography (HPSEC) on Toyo Soda G 2000 PW columns with water as the mobile phase. The elution profiles of these samples will allow researchers to select the correct maltodextrin for growth studies requiring specific dextrin oligomers. Characterization of the chromatography system with standards of known molecular weight allows estimation of the weight average molecular weight of polydisperse dextrins. The enzymatic hydrolysis of dextrin by bacterial-amylase and fungal glucoamylase was also monitored by HPSEC.  相似文献   

14.
The effects of pressure on cytochrome c peroxidase [CcP(FeIII)], its cyano derivative (CcP X CN) and its enzyme-substrate complex (ES) have been studied. The effects of pressure on the binding of the substrate analog porphyrin cytochrome c (porphyrin c) to CcP X CN and ES have also been studied. High pressure causes CcP(FeIII) to undergo a high-spin to low-spin transition but has no detectable effect on either CcP X CN, which is already low spin, or on ES. The low-spin CcP(FeIII) structure at pressure is similar to the low-spin form at low temperature and the low-spin form of horseradish peroxidase at high pressure. delta V degree associated with the spin equilibrium is about 30 ml/mol and is independent of temperature. delta G degree is small, 4.7 kJ/mol at 0 degree C, while delta H degree is 14.2 kJ/mol at 1 bar (100 kPa). Pressure has no detectable effect on the binding equilibria of mixtures of CcP X CN plus porphyrin c or ES plus porphyrin c. This indicates that the interaction of CcP and porphyrin c results in little or no volume change; the same is true in the case of cytochrome c oxidase and porphyrin c.  相似文献   

15.
固态下酵母自溶可以有效促进菌体内多种活性物质的释放,进而提高酵母类产品的品质。通过优化自溶温度、自溶时间及自溶促进剂锌离子浓度以获得固态发酵下酵母自溶的最佳工艺,对固态发酵物料中游离氨基酸、可溶性蛋白、α-氨基氮含量和A260/A280等指标的分析来确定固态酵母自溶工艺条件,在此基础上以自溶温度40 ℃、50 ℃、55 ℃;作用时间12、18、24 h;锌离子添加浓度2、4、8 mg/kg设置L9(33)正交试验,进一步优化固态酵母自溶的工艺参数。结果表明酵母自溶的最佳工艺条件为:自溶温度55 ℃、作用时间18 h、锌离子浓度2 mg/kg,此时其可溶性蛋白含量可达9.31 mg/g、游离氨基酸14.36 mg/g、α-氨基氮10.16 μg/g、A260/A280为1.73。经工艺优化后,可显著提高酵母自溶产物可溶性蛋白、游离氨基酸和α-氨基氮的含量,从而明显提高了复合菌培养物的品质。  相似文献   

16.
17.
18.
19.
Dried microorganisms are particularly resistant to high hydrostatic pressure effects. However, exposure to high pressures of nitrogen proved to be effective in inactivating dried yeasts. In this study, we tried to elucidate this mechanism on Saccharomyces cerevisiae. High-pressure treatments were performed using different inert gases at 150 MPa and 25 degrees C with holding time values up to 12 months. The influence of cell hydration was also investigated. For fully hydrated cells, pressurized gases had little specific effect: cell inactivation was mainly due to compression effects. However, dried cells were sensitive to high pressure of gases. In this latter case, two inactivation kinetics were observed. For holding time up to 1 h, the inactivation rate increased to 4 log and was linked to a loss of membrane integrity and the presence of damage on the cell wall. In such case cell inactivation would be due to gas sorption and desorption phenomena which would rupture dried cells during a fast pressure release. Gas sorption would occur in cell lipid phases. For longer holding times, the inactivation rate increased more slightly due to compression effects and/or to a slower gas sorption. Water therefore played a key role in cell sensitivity to fast gas pressure release. Two hypotheses were proposed to explain this phenomenon: the rigidity of vitrified dried cells and the presence of glassy solid phases which would favor intracellular gas expansion. Our results showed that dried microorganisms can be ruptured and inactivated by a fast pressure release with gases.  相似文献   

20.
The effects of temperature and pH on the survival and growth of Saccharomyces cerevisiae, Kloeckera apiculata, Candida stellata, Candida krusei, Candida pulcherrima and Hansenula anomala were examined during mixed culture in grape juice. At 25°C, pH 3.0 and pH 3.5, S. cerevisiae dominated the fermentation and the other species died off before fermentation was completed. Saccharomyces cerevisiae also dominated the fermentation at 20°C but there was increased growth and survival of the other species. At 10°C the fermentation was dominated by the growth of both S. cerevisiae and K. apiculata and there was extended growth and survival of C. stellata and C. krusei. Juices fermented at 10°C exhibited ethanol concentrations between 7.4 and 13.4% and populations of K. apiculata, C. stellata and C. krusei in the range 106-108 cells/ml. However, these species produced maximum ethanol concentrations in the range 2.7–6.6% when grown as single cultures in grape juice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号