首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ribosomal subunit antiassociation activity has been purified from both the postribosomal supernatant and ribosomal salt-wash protein fractions of rabbit reticulocyte lysates. A majority (greater than 90%) of the activity is associated with a low molecular weight protein of Mr of approximately 25,000. A small but significant level of antiassociation activity (less than 10%) was found to be associated with higher molecular weight protein fractions. The purified 25,000-dalton antiassociation factor interacts with 60 S ribosomal subunits to prevent them from reassociating with 40 S ribosomal subunits. The factor does not seem to interact directly with 40 S subunits nor does it dissociate 80 S monosomes. The properties of this factor are thus similar to the eukaryotic initiation factor 6 isolated from both wheat germ and calf liver extracts.  相似文献   

2.
A factor has been isolated from wheat germ that enhances the ability of initiation factor 2 (eIF-2) to form a ternary complex with GTP and Met-tRNAf and enhances the binding of Met-tRNAf to 40 s ribosomal subunits. This factor, designated Co-eIF2 beta, is a monomeric protein with a molecular weight of approximately 83,000. Wheat germ eIF-2 forms a stable binary complex with GDP but not with GTP. Co-eIF-2 beta enhances the formation of an eIF-2 . GDP complex, but does not enable eIF-2 to form a stable complex with GTP.  相似文献   

3.
Tetrahymena pyriformis ribosomal subunits were obtained by incubation of post-mitochondrial supernatant in the presence of 0.2 mM GTP and 0.1 mM puromycin for 45 min at 28 degrees C, followed by sucrose density gradient centrifugation. Isolated 40-S subunits were able to reassociate in vitro in the presence of 5 mM MgCl2 and 50 mM KCl and to perform poly(U)-dependent protein synthesis. The 60-S subunit carries the peptidyl transferase activity. The number of proteins in T. pyriformis ribosomal subunits was determined by two-dimensional polyacrylamide gel electrophoresis. The 40-S subunit contains 30 different protein species (including two acidic proteins). The 60-S subunit contains 35 different protein species (including two acidic proteins). The proteins were numbered following the system of Kaltschmidt and Wittmann.  相似文献   

4.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

5.
In vitro mutagenesis of rplB was used to generate changes in a conserved region of Escherichia coli ribosomal protein L2 between Gly221 and His231. Mutants were selected by temperature sensitivity using an inducible expression system. A mutant L2 protein with the deletion of Thr222 to Asp228 was readily distinguishable from wild-type L2 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and ribosomes from the strain overexpressing this mutant protein were characterized by sucrose density gradient centrifugation and protein composition. In addition to 30 S and 50 S ribosomal subunits, cell lysates contained a new component that sedimented at 40 S in 1 mM Mg2+ and at 48 S in 10 mM Mg2+. These particles contained mutant L2 protein exclusively, completely lacked L16, and had reduced amounts of L28, L33, and L34. They did not reassociate with 30 S ribosomal subunits and were inactive in polyphenylalanine synthesis. Other mutants in the same conserved region, including the substitution of His229 by Gln229, produced similar aberrant 50 S particles that sedimented at 40 S and failed to associate with 30 S subunits.  相似文献   

6.
In order to understand the possible role of eucaryotic initiator factor 3 (eIF-3) in maintaining a pool of eucaryotic subunits, we have measured the effects of eIF-3 on the equilibria and kinetics of ribosomal subunit association and dissociation. The ribosomal subunit interactions have been studied by laser light scattering, which does not perturb the system. We find that eIF-3 reduces the apparent association rate of reticulocyte, wheat germ, and Artemia ribosomes. The kinetics of the reassociation for a shift in [Mg2+] from 0.5 to 6 mM are best explained by a model where eIF-3 dissociates from the 40S subunits prior to association of the 40S and 60S subunits. Static titrations indicate there is some binding of eIF-3 to 80S ribosomes at lower [Mg2+].  相似文献   

7.
D J Goss  D J Rounds 《Biochemistry》1988,27(10):3610-3613
The rate constants for eucaryotic initiation factor 3 (eIF3) association and dissociation with 40S ribosomal subunits and 80S monosomes have been determined. These rate constants were determined by laser light scattering with unmodified eIF3. The affinity of eIF3 for 40S subunits is about 30-fold greater than for 80S ribosomes. This difference in affinity resides mainly in the association rate constants. Rate constants of 8.8 X 10(7) and 7.3 X 10(6) M-1 s-1 were obtained for eIF3 binding to 40S subunits and 80S ribosomes, respectively. From thermodynamic cycles, the affinity of eIF3-40S subunits for 60S subunits is about 30-fold lower than free 40S subunits for 60S subunits. A calculation shows that under these conditions and assuming simple equilibria, approximately 12% of ribosomal subunits would associate via a reaction of 40S-eIF3 with 60S subunits as opposed to a path where eIF3 dissociates from the 40S subunits prior to association with 60S subunits.  相似文献   

8.
Eukaryotic initiation factor 5 (eIF-5), which specifically catalyzes the joining of a 60 S ribosomal subunit to a 40 S initiation complex to form a functional 80 S initiation complex, has been purified from ribosomal salt wash proteins of calf liver. The purified factor exhibits only one polypeptide band of Mr = 62,000 following electrophoresis in 10% polyacrylamide gels in the presence of sodium dodecyl sulfate. The native protein has a sedimentation coefficient of 4.2 S and a Stokes radius of 33 A which is consistent with eIF-5 being a monomeric protein of Mr = 58,000-62,000. Less pure preparations of eIF-5 elute in gel filtration columns with an apparent Mr of 160,000-180,000 presumably due to association of eIF-5 with other high molecular weight proteins since eIF-5 activity present in such preparations can also be shown by gel electrophoretic separation under denaturing conditions to be associated with a 62,000-dalton protein. Furthermore, eIF-5 purified from calf liver extracts with or without a number of protease inhibitors is indistinguishable with regard to molecular weight and final specific activity of purified preparations. The purified factor catalyzes the hydrolysis of GTP present in 40 S initiation complexes in the absence of 60 S ribosomal subunits. The presence of 60 S ribosomal subunits neither stimulates nor inhibits the hydrolysis of GTP. However, the factor cannot mediate 40 S or 40 + 60 S ribosome-dependent hydrolysis of GTP in the absence of Met-tRNAf or other components required for 40 S initiation complex formation. It can be calculated that 1 pmol of eIF-5 protein can catalyze the formation of at least 10 pmol of 80 S initiation complex under the conditions of in vitro initiation reactions.  相似文献   

9.
Mammalian translation initiation factor 3 (eIF3) is a multisubunit complex containing at least 12 subunits with an apparent aggregate mass of approximately 700 kDa. eIF3 binds to the 40S ribosomal subunit, promotes the binding of methionyl-tRNAi and mRNA, and interacts with several other initiation factors to form the 40S initiation complex. Human cDNAs encoding 11 of the 12 subunits have been isolated previously; here we report the cloning and characterization of a twelfth subunit, a 28-kDa protein named eIF3k. Evidence that eIF3k is present in the eIF3 complex was obtained. A monoclonal anti-eIF3a (p170) Ig coimmunoprecipitates eIF3k with the eIF3 complex. Affinity purification of histidine-tagged eIF3k from transiently transfected COS cells copurifies other eIF3 subunits. eIF3k colocalizes with eIF3 on 40S ribosomal subunits. eIF3k coexpressed with five other 'core' eIF3 subunits in baculovirus-infected insect cells, forms a stable, immunoprecipitatable, complex with the 'core'. eIF3k interacts directly with eIF3c, eIF3g and eIF3j by glutathione S-transferase pull-down assays. Sequences homologous with eIF3k are found in the genomes of Caenorhabitis elegans, Arabidopsis thaliana and Drosophila melanogaster, and a homologous protein has been reported to be present in wheat eIF3. Its ubiquitous expression in human tissues, yet its apparent absence in Saccharomyces cerevisiae and Schizosaccharomyces pombe, suggest a unique regulatory role for eIF3k in higher organisms. The studies of eIF3k complete the characterization of mammalian eIF3 subunits.  相似文献   

10.
The eukaryotic supernatant initiation factor, described in earlier publications from this laboratory, has been isolated and purified over 3000-fold, to about 70 to 80% purity, from extracts of embryos of the brine shrimp Artemia salina. The native protein appears to consist of two equal subunits, each weighing approximately 74,000 daltons. Like the bacterial initiation factor IF2, its prokaryotic counterpart, the Artemia factor promotes the AUG-dependent binding of fMet-tRNA, or the poly (U)-dependent binding of N-acetyl-Phe-tRNA, to the small ribosomal subunit. However, unlike IF2, the reaction is GTP-independent and the factor functions catalytically for one molecule may promote the binding of up to 12 molecules of fMet-tRNA to 40 s subunits at 0 °C.  相似文献   

11.
A two-dimensional polyacrylamide gel electrophoresis procedure has been used to identify initiation factors rapidly in the high-salt-wash fraction from reticulocyte ribosomes. Initiation factors are identified by relative mobility and by co-electrophoresis with purified factors. A creatine phosphate/ATP/GTP/Pi exchange system is described which has been used to maintain [gamma-32P]ATP and [gamma-32P]GTP at constant specific activity in the cell-free protein-synthesizing system. Phosphorylated proteins associated with the protein-synthesizing complex have been identified using a combination of the two procedures. The salt-wash fraction contains eight major phosphorylated proteins and a number of minor ones. Two phosphorylated proteins are observed to comigrate with two of the three subunits of eukaryotic initiation factor 2 (eIF-2), the initiation factor involved in binding Met-tRNAf onto the 40-S subunit and promoting dissociation of 80-S ribosomes. eIF-4B, one of the proteins involved in binding mRNA to 40-S subunits is also phosphorylated. The remainder of phosphorylated proteins in the high-salt-wash fraction are not previously characterized initiation factors and have not been identified further. Two of the six phosphoproteins associated with the salt-washed ribosomes comigrate with ribosomal proteins; one is the major phosphorylated protein in 40-S ribosomal subunits, the other is an acidic protein.  相似文献   

12.
M Arpin  J P Reboud  A M Reboud 《Biochimie》1975,57(10):1177-1184
Rat liver 40S and 60S ribosomal subunits were treated with increasing concentrations of trypsin. The activity of both trypsin-treated subunits, when assayed for polyphenylalanine synthesis, progressively decreased, but the 60S subunits were inactivated at much lower trypsin concentrations than were the 40S ones. The sedimentation coefficients of trypsin-treated subunits were identical to those of control subunits when sucrose gradients containing 0.5 M KCl were used. When the sucrose gradients were prepared with a low salt buffer (80 mM KCl), dimer formation was observed with control subunits, but not with trypsin-treated ones. Two-dimensional gel electrophoresis analysis of the proteins extracted from trypsin-treated subunits revealed that all ribosomal proteins in the subunits were accessible to the enzyme. However, several proteins were more resistant to trypsin in compact subunits than when they were free or in unfolded subunits. Proteins of the 60S subunits were generally digested by lower trypsin concentrations than those of the 40S subunits. From the quantitative measurements of the undigested proteins, a classification of the proteins from both subunits according to their trypsin sensitivity was established. These results were compared with those previously obtained concerning ribosomal protein reactivity to chemical reagents.  相似文献   

13.
Dormant and developing embryos of Artemia salina contain equivalent amounts of eIF-2, the eukaryotic initiation factor which forms a ternary complex with GTP and Met-tRNAf. The factor was purified from 0.5 M NH4Cl ribosomal washes by (NH4)2SO4 fractionation, followed by chromatography on heparin-Sepharose, DEAE-cellulose, hydroxyapatite and phosphocellulose. Purified preparations from dormant and developing embryos have similar specific activities and nucleotide requirements. The mobility of both proteins in dodecylsulfate gel electrophoresis is indistinguishable, and each contains three major polypeptide chains of molecular weight 52 000, 45 000 and 42 000. Both proteins are also immunologically identical, and each stimulates amino acid incorporation in a cell-free system of protein synthesis. The binding of [35S]Met-tRNAf to 40-S ribosomal subunits is catalyzed by eIF-2 isolated from dormant or developing embryos and is dependent upon GPT and AUG. Binding of [35S]Met-tRNAf to 40-S ribosomal subunits, and ternary complex formation with eIF-2, GTP, and [35S]Met-tRNAf is stimulated 2--3-fold by a factor present in the 0.5 M NH4Cl ribosomal wash and which elutes from DEAE-cellulose at 50 mM KCl. This protein does not exhibit GTP-dependent binding of [35S]Met-tRNAf. Binding of GDP and GTP was investigated with purified eIF-2 from developing embryos. The factor forms a binary complex with GDP or GTP, and eIF-2-bound [3H]GDP exchanges very slowly with free nucleotides. Our results suggest that eIF-2 does not limit resumption of embryo development following encystment, nor does it limit mRNA translation in extracts from dormant embryos.  相似文献   

14.
Identification of a new protein synthesis initiation factor from wheat germ   总被引:6,自引:0,他引:6  
A previously unidentified factor has been isolated from wheat germ that stimulates globin mRNA-directed polypeptide synthesis in vitro. This factor is separated from eukaryotic initiation factor (eIF)-4B by chromatography on m7GTP-Sepharose. eIF-4B binds to m7GTP-Sepharose, whereas the stimulatory factor does not. Further purification of the factor yields a preparation that contains one major polypeptide with a molecular weight of approximately 59,000, This factor enhances the binding of globin mRNA to 40 S ribosomal subunits in the presence of eIF-2, eIF-3, eIF-4A, and either eIF-4B or eIF-4F and has been designated eIF-4G.  相似文献   

15.
This electron microscopic study demonstrates that formation of a functional eukaryotic 40S initiation complex is accompanied by conformational changes which obscure the characteristic structural features of the 40S ribosomal subunits and of the initiation factor eIF-3, the only macromolecular components of the complex individually resolvable by conventional high resolution electron microscopy. The complex, characterized by a sedimentation coefficient of 46S, appears as a globular particle with a diameter of about 280 A and several characteristic protrusions and incisions. Similar structures were obtained with [40S X eIF-3] initiation complexes formed by interaction of eIF-3 from rabbit reticulocytes with 40S ribosomal subunits from either A. salina cysts or mouse liver. Incubation of eIF-3 with prokaryotic 30S subunits from E. coli produced no [30S X eIF-3] structures. The binding of eIF-3 to 40S subunits is weak, and both the [40S X eIF-3] and the complete 40S initiation complexes have to be stabilized by glutaraldehyde fixation. The extensive conformational changes associated with the complex formation preclude direct electron microscopic localization of eIF-3, a globular protein approximately 100 A in diameter, in the initiation domain of the 40S subunit.  相似文献   

16.
A comparison has been made between the ribosomal proteins phosphorylated in intact cells and proteins isolated from ribosomal subunits after modification in vitro by purified protein kinases and [gamma-32P]ATP. When intact reticulocytes were incubated for 2 h in a nutritional medium containing radioactive inorganic phosphate, one phosphorylated protein was identified as a 40S ribosomal component using two-dimensional polyacrylamide gel electrophoresis followed by electrophoresis in a third step containing sodium dodecyl sulfate. This protein, containing 99% of the total radioactivity associated with ribosomal proteins as observed by two-dimensional electrophoresis, is found in a nonphosphorylated form in addition to several phosphorylated states. These states differ by the number of phosphoryl group attached to the protein. The same 40S protein is modified in vitro by the three cAMP-regulated protein kinases from rabbit reticulocytes. Two additional proteins associated with the 40S subunit are phosphorylated in situ. These proteins migrate as a symmetrical doublet, and contain less than 1% of the radioactive phosphate in the 40S subunit. A number of phosphorylated proteins associated with 60S subunits are observed by disc gel electrophoresis after incubation of whole cells with labeled phosphate. These proteins do not migrate with previously identified ribosomal proteins and are not present in sufficient amounts to be identified as ribosomal structural proteins. Proteins in the large subunit are modified in vitro by cAMP-regulated protein kinases and ATP, and these modified proteins migrate with known ribosomal proteins. However, this phosphorylation has not been shown to occur in intact cells.  相似文献   

17.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

18.
The ribosomal population of the sponge Geodia cydonium has been examined. The monosomes have a sedimentation constant of 80 S, the sizes of the subunits are approximately 60 S and 45 S respectively. The polyribosomes contain up to 40 ribosomal units. Cell free protein synthesizing systems (cell homogenate as well as reconstituted system) have been prepared and characterized with respect to Mg2+, KCI and ATP concentrations, temperature, pH and time course of the reaction. In the cell-free system and in the cellular system the protein biosynthesis is inhibited by chloramphenicol. It is not affected by cycloheximide.  相似文献   

19.
Eukaryotic initiation factor 2A (eIF2A) has been shown to direct binding of the initiator methionyl-tRNA (Met-tRNA(i)) to 40 S ribosomal subunits in a codon-dependent manner, in contrast to eIF2, which requires GTP but not the AUG codon to bind initiator tRNA to 40 S subunits. We show here that yeast eIF2A genetically interacts with initiation factor eIF4E, suggesting that both proteins function in the same pathway. The double eIF2A/eIF4E-ts mutant strain displays a severe slow growth phenotype, which correlated with the accumulation of 85% of the double mutant cells arrested at the G(2)/M border. These cells also exhibited a disorganized actin cytoskeleton and elevated actin levels, suggesting that eIF2A might be involved in controlling the expression of genes involved in morphogenic processes. Further insights into eIF2A function were gained from the studies of eIF2A distribution in ribosomal fractions obtained from either an eIF5BDelta (fun12Delta) strain or a eIF3b-ts (prt1-1) strain. It was found that the binding of eIF2A to 40 and 80 S ribosomes was not impaired in either strain. We also found that eIF2A functions as a suppressor of Ure2p internal ribosome entry site-mediated translation in yeast cells. The regulation of expression from the URE2 internal ribosome entry site appears to be through the levels of eIF2A protein, which has been found to be inherently unstable with a half-life of approximately 17 min. It was hypothesized that this instability allows for translational control through the level of eIF2A protein in yeast cells.  相似文献   

20.
It has been previously reported by J. R. Lenz et al. [(1978) Biochemistry 17, 80--87] that certain phosphorylated sugars stimulate protein synthesis in extracts of mammalian cells. This effect was found to be due to a stimulation of Met-tRNAf binding to 40S ribosomal subunits, both in whole extracts and with isolated ribosomes. However, formation of a ternary complex of Met-tRNAf, initiation factor eIF-2, and GTP was not stimulated. It was also shown that the stimulation is not due solely to metabolism of the sugars. The present communication further characterizes the stimulatory effect of the sugars. They were found to prevent the inactivation of ribosomes that occurs during protein synthesis incubations. The sugars were also found to inhibit cAMP-dependent protein kinases noncompetitively. However, they stimulate Met-tRNAf binding to 40S ribosomal subunits even under conditions in which an inhibition of protein kinase has no effect. Although it has bot been possible to demonstrate a direct association of the sugars with the 40S initiation complex, the evidence suggests that their effect is mediated by an interaction with one of the components involved in the formation of this complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号