首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single channel current was studied in the membrane of the immature oocyte of the european frog (Rana esculenta) by using the "patch clamp" technique in the "cell attached" configuration. Single channel activity appeared as short outward currents when membrane potential was made positive inside; full activation required seconds to be complete, no inactivation being appreciable. Deactivation (or current block) upon membrane repolarization was so fast that no inward current could be detected in any case. The reversal potential, estimated by interpolating the I/V diagrams, was -30 mV using standard Ringer as electrode filling solution, and the elementary conductance was 95 pS. Neither reversal potential nor elementary conductance were affected by removal of external Ca2+ (Mg2+ or Ba2+ substitution) or external Cl- (methanesulphonate substitution). The reversal potential moved towards positive potentials by substituting external Na+ with K+, the magnitude of the shifts being consistent with a ratio PK/PNa = 6.4. A distinctive property of the current/voltage relation for this K-current is its anomalous bell-shape, the outward current displaying a maximum at membrane potentials around 75 mV with standard Ringer as electrode filling solution and tending to zero with more positive potentials.  相似文献   

2.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

3.
There have been periodic reports of nonclassic (4-aminopyridine insensitive) transient outward K+ current in guinea pig ventricular myocytes, with the most recent one describing a novel voltage-gated inwardly rectifying type. In the present study, we have investigated a transient outward current that overlaps inward Ca2+ current (I(Ca,L)) in myocytes dialyzed with 10 mM K+ solution and superfused with Tyrode's solution. Although depolarizations from holding potential (Vhp) -40 to 0 mV elicited relatively small inward I(Ca,L) in these myocytes, removal of external K+ or addition of 0.2 mM Ba2+ more than doubled the amplitude of the current. The basis of the enhancement of I(Ca,L) was the suppression of a large transient outward K+ current. Similar enhancement was observed when Vhp was moved to -80 mV and test depolarizations were preceded by short prepulses to -40 mV. Investigation of the time and voltage properties of the outward K+ transient indicated that it was inwardly rectifying and unlikely to be carried by voltage-gated channels. The outward transient was attenuated in myocytes dialyzed with high-Mg2+ solution, accelerated in myocytes dialyzed with 100 microM spermine solution, and abolished with time in myocytes dialyzed with ATP-free solution. These and other findings suggest that the outward transient is a component of classic "time-independent" inwardly rectifying K+ current.  相似文献   

4.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

5.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Basal retinal neurons of the marine mollusc Bulla gouldiana continue to express a circadian modulation of their membrane conductance for at least two cycles in cell culture. Voltage-dependent currents of these pacemaker cells were recorded using the whole-cell perforated patch-clamp technique to characterize outward currents and investigate their putative circadian modulation. Three components of the outward potassium current were identified. A transient outward current (IA) was activated after depolarization from holding potentials greater than -30 mV, inactivated with a time constant of 50 ms, and partially blocked by 4-aminopyridine (1-5 mM). A Ca(2+)-dependent potassium current (IK(Ca)) was activated by depolarization to potentials more positive than -10 mV and was blocked by removing Ca2+ from the bath or by applying the Ca2+ channel blockers Cd2+ (0.1-0.2 mM) and Ni2+ (1-5 mM). A sustained Ca(2+)-independent current component including the delayed rectifier current (IK) was recorded at potentials positive to -20 mV in the absence of extracellular Na+ and Ca2+ and was partially blocked by tetraethylammonium chloride (TEA, 30mM). Whole-cell currents recorded before and after the projected dawn and normalized to the cell capacitance revealed a circadian modulation of the delayed rectifier current (IK). However, the IA and IK(Ca) currents were not affected by the circadian pacemaker.  相似文献   

7.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

8.
The effects of caffeine on tension, membrane potential, membrane currents, and intracellular [Ca2+], measured as the light emitted by the Ca2+-activated photoprotein aequorin, were studied in canine cardiac Purkinje fibers. An initial, transient, positive inotropic effect of caffeine was accompanied by a transient increase in the second component of the aequorin signal (L2) but not the first (L1). In the steady state, 4 or 10 mM caffeine always decreased twitch tension and greatly reduced both L1 and L2. At a concentration of 2 mM, caffeine usually reduced but occasionally increased the steady state twitch tension. However, 2 mM caffeine always reduced both L1 and L2. Caffeine eliminated the diastolic oscillations of intracellular [Ca2+] induced by high extracellular [Ca2+]. In voltage-clamp experiments, 10 mM caffeine reduced the transient outward current and the peak tension elicited by step depolarization from a holding potential of -45 mV. In the presence of 20 mM Cs+, 10 mM caffeine reduced slow inward current. However, the time course of this reduction was far slower than that in tension and light observed in separate experiments. The simplest explanation of the results is that caffeine inhibits the sequestration of Ca2+ by the sarcoplasmic reticulum. The results also suggest that in Purkinje fibers caffeine increases the sensitivity of the myofilaments to Ca2+.  相似文献   

9.
Recording from the dendrite membrane indicated a resting potential of --51.6 mV, which was reduced by inhibition of the Na+/K+ pump. Voltage clamp at rest revealed a small inward current between --50 and --80 mV and a larger outward current at clamp potentials of --40 to plus 30 mV. Using ramp-changes of muscle tension as stimuli a time-variant tension-induced inward current (TIC) became apparent, the amplitude of which decreased towards larger depolarizing voltages until at plus 18 mV the current reversed the direction. The time course of the conductance changes corresponds to similar phases in the generator potential. The outward current only responded to fast reductions in tension, decreasing transiently. A contribution of the active Na+/K+ pump to the hyperpolarizing potential response is suggested by the effects of K-removal or Na-substitution by Li+. In Na-free choline chloride media the generator potential and the TIC was depressed by 70-85%. Additional removal of Ca2+ abolished the TIC. In contrast, lowering the Ca2+ level in presence of Na+ decreased the membrane resistance and markedly enhanced the TIC (maximally eightfold at 10(-5) M Ca2+) while 75-150 mM Ca2+ or intracellular application of a Ca-ionophore had the reverse effect.  相似文献   

10.
The effect of acidosis on the electrical activity of isolated rat atrial myocytes was investigated using the patch-clamp technique. Reducing the pH of the bathing solution from 7.4 to 6.5 shortened the action potential. Acidosis had no significant effect on transient outward or inward rectifier currents but increased steady-state outward current. This increase was still present, although reduced, when intracellular Ca(2+) was buffered by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA); BAPTA also inhibited acidosis-induced shortening of the action potential. Ni(2+) (5 mM) had no significant effect on the acidosis-induced shortening of the action potential. Acidosis also increased inward current at -80 mV and depolarized the resting membrane potential. Acidosis activated an inwardly rectifying Cl(-) current that was blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which also inhibited the acidosis-induced depolarization of the resting membrane potential. It is concluded that an acidosis-induced increase in steady-state outward K(+) current underlies the shortening of the action potential and that an acidosis-induced increase in inwardly rectifying Cl(-) current underlies the depolarization of the resting membrane potential during acidosis.  相似文献   

11.
This paper provides the first study of voltage-sensitive membrane currents present in heart myocytes from cephalopods. Whole cell patch clamp recordings have revealed six different ionic currents in myocytes freshly dissociated from squid cardiac tissues (branchial and systemic hearts). Three types of outward potassium currents were identified: first, a transient outward voltage-activated A-current (IA), blocked by 4-aminopyridine, and inactivated by holding the cells at a potential of −40 mV; second, an outward, voltage-activated, delayed rectifier current with a sustained time course (IK); and third, an outward, calcium-dependent, potassium current (IK(Ca)) sensitive to Co2+ and apamin, and with the characteristic N-shaped current voltage relationship. Three inward voltage-activated currents were also identified. First, a rapidly activating and inactivating, sodium current (INa), blocked by tetrodotoxin, inactivated at holding potentials more positive than −40 mV, and abolished when external sodium was replaced by choline. Second, an L-type calcium current (ICa,L) with a sustained time course, suppressed by nifedipine or Co2+, and enhanced by substituting Ca2+ for Ba2+ in the external medium. The third inward current was also carried by calcium ions, but could be distinguished from the L-type current by differences in its voltage dependence. It also had a more transient time course, was activated at more negative potentials, and resembled the previously described low-voltage-activated, T-type calcium current. Accepted: 24 September 1999  相似文献   

12.
Mechanotransduction is required for a wide variety of biological functions. The aim of this study was to determine the effect of activation of a mechanosensitive Ca(2+) channel, present in human jejunal circular smooth muscle cells, on whole cell currents and on membrane potential. Currents were recorded using patch-clamp techniques, and perfusion of the bath (10 ml/min, 30 s) was used to mechanoactivate the L-type Ca(2+) channel. Perfusion resulted in activation of L-type Ca(2+) channels and an increase in outward current from 664 +/- 57 to 773 +/- 72 pA at +60 mV. Membrane potential hyperpolarized from -42 +/- 4 to -50 +/- 5 mV. In the presence of nifedipine (10 microM), there was no increase in outward current or change in membrane potential with perfusion. In the presence of charybdotoxin or iberiotoxin, perfusion of the bath did not increase outward current or change membrane potential. A model is proposed in which mechanoactivation of an L-type Ca(2+) channel current in human jejunal circular smooth muscle cells results in increased Ca(2+) entry and cell contraction. Ca(2+) entry activates large-conductance Ca(2+)-activated K(+) channels, resulting in membrane hyperpolarization and relaxation.  相似文献   

13.
Light-induced currents were measured with a two-microelectrode voltage clamp of type B photoreceptor somata, which had been isolated by axotomy from all synaptic interactions as well as from all membranes capable of generating impulse activity. In artificial seawater (ASW), light elicited a transient early inward current, INa+, which depended on Na+o and had a linear current-voltage relation and an extrapolated reversal potential of 30-40 mV (absolute). In 0-Na+ ASW, light elicited a transient short-latency outward current that dependent on K+o, increased exponentially with more positive voltages (greater than or equal to -40 mV), and reversed at -70 to -75 mV. This outward current was not blocked by Ca++ channel blockers (e.g., Cd++, Co++) or substitution of Ba++o, for Ca++o, but was reduced by iontophoretic injection of EGTA. In both ASW and 0-Na+ ASW, light also elicited a delayed, apparently inward current, which was associated with a decreased conductance, depended on K+o, increased exponentially with more positive voltages (greater than or equal to -40 mV), reversed at the equilibrium potential for K+ flux in elevated K+o was eliminated by substitution of Ba++o for Ca++o, and was greatly reduced by Cd++o or Co++o. Thus, light elicited an early Ca++-dependent K+ current, IC, and a prolonged decrease of IC. Iontophoretic injection of Ca++ through a third microelectrode caused prolonged reduction of both IC and the light-induced decrease of IC, but did not alter ICa++ or the current-voltage relation of IC. Ruthenium red (1 microM) in the external medium caused a prolongation of the light-induced decrease of IC. Iontophoretic injection of EGTA often eliminated the light-induced IC decrease while decreasing peak IC (during depolarizing steps to -5 or 0 mV) by less than one-half. EGTA injection, on the average, did not affect steady state IC but reduced the light-induced decrease of steady state IC to approximately one-third of its original magnitude. The prolonged IC decrease, elicited by dim light in the absence of light-induced IC or INa+, was more completely eliminated by EGTA injection. It was concluded that light, in addition to inducing a transient inward Na+ current, causes both a transient increase and a prolonged decrease of IC via elevation of Ca++i.  相似文献   

14.
In atrial muscle, acetylcholine (ACh) decreases the slow inward current (Isi) and increases the time-independent outward K+ current. However, in ventricular muscle, ACh produces a marked negative inotropic effect only in the presence of positive inotropic agents that elevate cyclic adenosine monophosphate (AMP). A two-microelectrode voltage-clamp method was used on cultured reaggregates of cells from 16--20-d-old embryonic chick ventricles to determine the effects of ACh on Isi and outward current during beta-adrenergic stimulation. Only double penetrations displaying low-resistance coupling were voltage-clamped. Cultured reaggregates are advantageous because their small size (50-- 250 microns) permits better control of membrane potential and adequate space clamp. Tetrodotoxin (10(-6) M) and a holding potential of --50 to --40 mV were used to eliminate the fast Na+ current. Depolarizing voltage steps above --40 mV caused a slow inward current to flow that was sensitive to changes in [Ca]o and was depressed by verapamil (10(- 6) M). Maximal Isi was obtained at --10 mV and the reversal potential was about +25 mV. Isoproterenol (10(-6) M) increased Isi at all clamp potentials. Subsequent addition of ACh (10(-6) M) rapidly reduced Isi to control values (before isoproterenol) without a significant effect on the net outward current measured at 300 ms. The effects of ACh were reversed by muscarinic blockade with atropine (5 X 10(-6) M). We conclude that the anti-adrenergic effects of ACh in ventricular muscle are mediated by a reduction in Ca2+ influx during excitation.  相似文献   

15.
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes.  相似文献   

16.
1. Membrane currents have been recorded from the soma of a bifunctional basalar/coxal depressor motoneurone in the metathoracic ganglion of the cockroach (Periplaneta americana) using a two-electrode voltage-clamp technique. 2. This motoneurone cell body is normally inexcitable when studied under current-clamp. Appropriate depolarizing command steps evoke rapid transient outward currents and late outward currents. 3. Late outward currents are dominated by a Ca-dependent component that confers an N-shaped I-V relationship on the neurone. 4. The Ca-dependent outward current is suppressed by Cd2+ (1 mM), Mn2+ (5 mM) or verapamil (50 microM). 5. Externally applied tetraethylammonium ions (TEA+) (25 mM) block the Ca-dependent current, but also appear to suppress a component of the late outward current that is independent of Ca2+. 6. Aminopyridines cause only minor suppression of late outward currents, but shift the peak in the N-shaped I-V relationship to more negative potentials. 7. The reversal potential of tail currents recorded following pre-pulses to +50 mV were dependent upon the pre-pulse duration; increasing the duration from 10 to 50 msec caused a +17 mV shift in tail current reversal potential. 8. A five-fold increase in the K+ concentration of the solution bathing the preparation only produced small and inconsistent changes in the reversal potential of tail currents. 9. Five-fold reduction in external Cl- caused no change. 10. The dependence of tail current reversal potential upon pre-pulse duration and the limited effect of alterations in the composition of the bathing solution are discussed in the context of restricted ion movements near the external surface of the cell membrane.  相似文献   

17.
Membrane currents in isolated swine tracheal smooth muscle cells were investigated using a pipette solution containing BAPTA-Ca2+ buffer and Cs+ as the major cation. With a pipette solution containing 100 nM free Ca2+, acetylcholine (ACh; 1-100 microM), in a concentration-dependent manner, activated a current without inducing shortening of cells, although neither 1 mM histamine nor 1 microM leukotriene D4 activated the current (n = 7, n is the number of cells). The effect of 100 microM ACh was suppressed by pretreatment with 100 microM atropine (n = 6) or intracellular application of preactivated pertussis toxin at a concentration of 0.1 microg x mL(-1) (n = 8). Genistein (0.1-100 microM), in a concentration-dependent manner, suppressed the activation of the inward current by 100 microM ACh, whereas it did not significantly suppress that of the outward current (n = 6-8). With a pipette solution containing 50 nM free Ca2+, outward current, but not inward current, was activated by 100 microM ACh (n = 10). When the pipette solution had free Ca2+ concentrations greater than 50 nM, the inward current together with the outward current was activated. The ratio between the amplitude of the inward and outward currents was significantly increased as the free Ca2+ concentration in the pipette solution increased. The steady-state activation curve of the ACh-activated current with the 50 nM free Ca2+ pipette solution was fitted by a single Boltzmann distribution (Vh = +69.8 mV, k = -11.9 mV, n = 10). The activation time constant became smaller as the membrane potential was more depolarized (164.3+/-5.9 ms at +40 mV to 92.4+/-6.3 ms at +120 mV, n = 10). The reversal potential was not significantly changed by reducing extracellular Cl- concentration to one-tenth of the control (n = 8), suggesting that the current is a nonselective cationic current. These results suggest that ACh activates an outward nonselective cationic current via pertussis toxin-sensitive G-protein(s) coupled with muscarinic receptors. Involvement of genistein-sensitive tyrosine kinase in the activation process of the current is unlikely.  相似文献   

18.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

20.
A transient depolarization was recorded in response to the cooling of a deciliated Paramecium. The amplitude of the depolarization was almost proportional to the cooling rate. Therefore, the cells are sensitive to the rate of temperature change. The input resistance of the membrane transiently increased during the cooling. When constant current was applied to shift the resting membrane potential to a negative or positive level, the initial depolarization in response to cooling decreased, and the following hyperpolarization during cooling reversed to a gradual depolarization during a positive shift. The potential at which the reversal occurred was independent of K+ concentration and was slightly dependent on Ca2+ concentration (10 mV/log[Ca2+]o). The amplitude of the initial depolarization decreased with the increase in K+ and was not affected by Ca2+. These results are discussed in terms of changes in membrane conductances in response to cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号