首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite significant progress in the identification of the genetic basis of the refractory phenotype, little is known about the physiological mechanism of refractoriness. This study therefore examined the physiological basis of mosquito refractoriness in the Aedes aegypti/P. gallinaceum system, in which a selected refractory strain does not permit Plasmodium oocyst formation. We examined the kinetics of two major proteolytic enzymes involved in blood meal digestion and the dynamics of ookinete formation for two refractory populations (strains Moyo-R and Formosus) and one susceptible population (strain Red). Healthy ookinetes were observed in both the susceptible and the refractory populations, although the susceptible population generally exhibited higher enzymatic activity for trypsin and aminopeptidase than the refractory populations. Parasite numbers in the susceptible Red population showed a 4- to 7-fold decrease in abundance during the transition from the ookinete stage to the oocyst stage, far less than the refractory populations (30- to 92-fold reduction). Due to its smaller body size, Moyo-R individuals generally ingest a smaller blood meal and thus intake fewer gametocytes than Red individuals. Thus, the possibility that refractoriness in the Moyo-R population results from fewer gametocytes being ingested is examined. We found that the Red population remained highly susceptible and the Moyo-R population stayed refractory when those individuals with similar blood meal size were compared. We conclude that failure of oocyst development in the refractory mosquitoes is not due to ookinete damage by proteolytic enzymes or to fewer gametocytes being ingested, but rather is due to a midgut barrier or to some other mechanism.  相似文献   

2.
The genus Plasmodium is a unicellular eukaryotic parasite that is the causative agent of malaria, which is transmitted by Anopheline mosquito. There are a total of three developmental stages in the production of haploid parasites in the Plasmodium life cycle: the oocyst stage in mosquitoes and the liver and blood stages in mammalian hosts. The Plasmodium oocyst stage plays an important role in the production of the first generation of haploid parasites. Nuclear division is the most important event that occurs during the proliferation of all eukaryotes. However, obtaining the details of nuclear division at the oocyst stage is challenging owing to difficulties in preparation. In this study, we used focused-ion-beam-milling combined with scanning-electron-microscopy to report the 3D architecture during nuclear segregations in oocyst stage. This advanced technology allowed us to analyse the 3D details of organelle segregation inside the oocyst during sporogony formation. It was revealed that multiple nuclei were involved with several centrosomes in one germ nucleus during sporozoite budding (endopolygeny). Our high-resolution 3D analysis uncovered the endopolygeny-like nuclear architecture of Plasmodium in the definitive host. This nuclear segregation was different from that in the blood stage, and its similarity to other apicomplexan parasite nuclear divisions such as Sarcocystis is discussed.  相似文献   

3.
Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.  相似文献   

4.
Pseudomonas aeruginosa ATCC 15442 is a required organism in the Association of Official Analytical Chemists use-dilution method for disinfectant efficacy testing. When grown in a liquid medium, P. aeruginosa produces a dense mat or pellicle at the broth/air interface. The purpose of this investigation was to examine the pellicle by scanning electron microscopy, to evaluate three pellicle removal methods, and to determine the effect of pellicle fragments on disinfectant efficacy test results. The efficacies of three methods of pellicle removal (decanting, vacuum suction, and filtration) were assessed by quantifying cell numbers on penicylinders. The Association of Official Analytical Chemists use-dilution method was used to determine whether pellicle fragments in the tubes used to inoculate penicylinders affected test results. Scanning electron micrographs showed the pellicle to be a dense mass of intact, interlacing cells at least 10 microns thick. No significant differences in pellicle removal methods were observed, and the presence of pellicle fragments usually increased the number of positive tubes in the use-dilution method significantly.  相似文献   

5.
Sidén-Kiamos I  Louis C 《Parasitology》2008,135(12):1355-1362
Ookinetes are the motile and invasive stages of Plasmodium parasites in the mosquito host. Here we explore the role of intracellular Ca2+ in ookinete survival and motility as well as in the formation of oocysts in vitro in the rodent malaria parasite Plasmodium berghei. Treatment with the Ca2+ ionophore A23187 induced death of the parasite, an effect that could be prevented if the ookinetes were co-incubated with insect cells before incubation with the ionophore. Treatment with the intracellular calcium chelator BAPTA/AM resulted in increased formation of oocysts in vitro. Calcium imaging in the ookinete using fluorescent calcium indicators revealed that the purified ookinetes have an intracellular calcium concentration in the range of 100 nm. Intracellular calcium levels decreased substantially when the ookinetes were incubated with insect cells and their motility was concomitantly increased. Our results suggest a pleiotropic role for intracellular calcium in the ookinete.  相似文献   

6.
Pseudomonas aeruginosa ATCC 15442 is a required organism in the Association of Official Analytical Chemists use-dilution method for disinfectant efficacy testing. When grown in a liquid medium, P. aeruginosa produces a dense mat or pellicle at the broth/air interface. The purpose of this investigation was to examine the pellicle by scanning electron microscopy, to evaluate three pellicle removal methods, and to determine the effect of pellicle fragments on disinfectant efficacy test results. The efficacies of three methods of pellicle removal (decanting, vacuum suction, and filtration) were assessed by quantifying cell numbers on penicylinders. The Association of Official Analytical Chemists use-dilution method was used to determine whether pellicle fragments in the tubes used to inoculate penicylinders affected test results. Scanning electron micrographs showed the pellicle to be a dense mass of intact, interlacing cells at least 10 microns thick. No significant differences in pellicle removal methods were observed, and the presence of pellicle fragments usually increased the number of positive tubes in the use-dilution method significantly.  相似文献   

7.
Plasmodium: electron microscopy of antigen preparations   总被引:2,自引:0,他引:2  
  相似文献   

8.
Cultivation in vitro of Plasmodium gallinaceum oocysts   总被引:1,自引:0,他引:1  
  相似文献   

9.
Malaria ookinetes invade midgut epithelial cells of the mosquito vector from the bloodmeal in the lumen of the mosquito midgut, but the cellular interactions of ookinetes with the mosquito vector remain poorly described. We describe here a novel morphology of Plasmodium gallinaceum ookinetes in which the central portion of the ookinete is an elongated narrow tube or stalk joining the anterior and posterior portions of the parasite. We propose that the previously undescribed stalkform ookinete may be an adaptation to facilitate parasite locomotion through the cytoplasm of mosquito midgut epithelial cells.  相似文献   

10.
11.
Summary The structure or granules associated with the pellicle strips ofEuglena granulata (Klebs) Schmitz has been studied using light and electron microscopy. Two types of bodies can be distinguished in this association on the basis of their staining reactions, distribution, ultrastructure, and other characteristics. The first type, called pellicle pores, is distributed with regularity along certain pellicle strips; the pores are very uniform in size (about 300 m in diameter) and in content. They consist of an aperture and a compartment, the latter lined by the plasmalemma; in each compartment a dense, osmiophilic body and a series of tubules occur. The structure of the pellicle strips is modified at the points where the pellicle pores are present; the aperture extends to the cell surface in the groove between two pellicle strips. The second type of body, which undergoes vital staining with neutral red, is called a pellicle vacuole. These are variable in size (ca. 1 to 2 microns in diameter) and contain a variety of components including myelin figures, proliferated membranes, and sheets of electrondense material. The structure of these elements as well as their possible functional significance are discussed in some detail.  相似文献   

12.
13.
Plasmodium gallinaceum typically causes sub-clinical disease with low mortality in its primary host, the Indian jungle fowl Gallus sonnerati. Domestic chickens of European origin, however, are highly susceptible to this avian malaria parasite. Here we describe the development of P. gallinaceum in young White Leghorn chicks with emphasis on the primary exoerythrocytic phase of the infection. Using various regimens for infection, we found that P. gallinaceum induced a transient primary exoerythrocytic infection followed by a fulminant lethal erythrocytic phase. Prerequisite for the appearance of secondary exoerythrocytic stages was the development of a certain level of parasitaemia. Once established, secondary exoerythrocytic stages could be propagated from bird to bird for several generations without causing fatalities. Infected brains contained large secondary exoerythrocytic stages in capillary endothelia, while in the liver primary and secondary erythrocytic stages developed primarily in Kupffer cells and remained smaller. At later stages, livers exhibited focal hepatocyte necrosis, Kupffer cell hyperplasia, stellate cell proliferation, inflammatory cell infiltration and granuloma formation. Because P. gallinaceum selectively infected Kupffer cells in the liver and caused a histopathology strikingly similar to mammalian species, this avian Plasmodium species represents an evolutionarily closely related model for studies on the hepatic phase of mammalian malaria.  相似文献   

14.
15.
16.
Freeze-fracturing is especially suitable for the investigation of membrane structures. In contrast to ultrathin sectioning, large areas of the membranes are exposed. The true surface of membranes, however, can be seen only after etching (vacuum sublimation of ice) because during fracturing the frozen membrane is split between the two lipid layers. The representation of the hydrophobic region of the membrane reveals particles representing integral membrane proteins or, exceptionally, micelles of membrane lipids. Special structures on microbial membranes are, e.g., regular particle arrangements, invaginations and lipid domains with a periodic pattern of curvatures. There are still many unsolved questions concerning these structures, but the occurrence or the alteration of such structures as well as the density of “etching holes” on the membrane fracture face can be used as indicators for membrane perturbations.  相似文献   

17.
Erythrocyte labeling by random and cohort techniques was used to study erythrocyte survival in normal chickens and chickens infected with Plasmodium gallinaceum. Occurrence of erythrocyte destruction during the prepatent period was apparent in infected chickens by both techniques. Treatment with the antimalarials chloroquine and quinacrine not only cleared the circulation of parasites promptly but brought about an equally prompt cessation of disease-related erythrocyte destruction. Plasmodium gallinaceum infection caused a transitory decrease in blood volume at the time of rapid decrease in packed cell volume. The blood volume returned to preinfection values before the packed cell volume returned to normal. Parasitized erythrocytes were present in capillaries of the spleen, liver, and bone marrow during the entire prepatent period of the infection, thus providing a reasonable explanation for erythrocyte destruction observed in the absence of parasitemia during the prepatent period.  相似文献   

18.
19.
Vector-borne diseases constitute an enormous burden on public health across the world. However, despite the importance of interactions between infectious pathogens and their respective vector for disease transmission, the biology of the pathogen in the insect is often less well understood than the forms that cause human infections. Even with the global impact of Plasmodium parasites, the causative agents of malarial disease, no vaccine exists to prevent infection and resistance to all frontline drugs is emerging. Malaria parasite migration through the mosquito host constitutes a major population bottleneck of the lifecycle and therefore represents a powerful, although as yet relatively untapped, target for therapeutic intervention. The understanding of parasite-mosquito interactions has increased in recent years with developments in genome-wide approaches, genomics and proteomics. Each development has shed significant light on the biology of the malaria parasite during the mosquito phase of the lifecycle. Less well understood, however, is the process of midgut colonisation and oocyst formation, the precursor to parasite re-infection from the next mosquito bite. Here, we review the current understanding of cellular and molecular events underlying midgut colonisation centred on the role of the motile ookinete. Further insight into the major interactions between the parasite and the mosquito will help support the broader goal to identify targets for transmission-blocking therapies against malarial disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号