首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the C-terminal cystathionine β-synthase (CBS) domains of the nucleotide-binding domains of the ABC transporter OpuA, in conjunction with an anionic membrane surface function, act as sensor of internal ionic strength (Iin). Here, we show that a surface-exposed cationic region in the CBS module domain is critical for ion sensing. The consecutive substitution of up to five cationic residues led to a gradual decrease of the ionic strength dependence of transport. In fact, a 5-fold mutant was essentially independent of salt in the range from 0 to 250 mm KCl (or NaCl), supplemented to medium of 30 mm potassium phosphate. Importantly, the threshold temperature for transport was lowered by 5–7 °C and the temperature coefficient Q10 was lowered from 8 to ∼1.5 in the 5-fold mutant, indicating that large conformational changes are accompanying the CBS-mediated regulation of transport. Furthermore, by replacing the anionic C-terminal tail residues that extend the CBS module with histidines, the transport of OpuA became pH-dependent, presumably by additional charge interactions of the histidine residues with the membrane. The pH dependence was not observed at high ionic strength. Altogether the analyses of the CBS mutants support the notion that the osmotic regulation of OpuA involves a simple biophysical switching mechanism, in which nonspecific electrostatic interactions of a protein module with the membrane are sufficient to lock the transporter in the inactive state.In their natural habitats microorganisms are often exposed to changes in the concentration of solutes in the environment (1). A sudden increase in the medium osmolality results in loss of water from the cell, loss of turgor, a decrease in cell volume, and an increase in intracellular osmolyte concentration. Osmoregulatory transporters such as OpuA in Lactococcus lactis, ProP in Escherichia coli, and BetP in Corynebacterium glutamicum diminish the consequences of the osmotic stress by mediating the uptake of compatible solutes upon an increase in extracellular osmolality (24). For the ATP-binding cassette (ABC)5 transporter OpuA, it has been shown that the system, reconstituted in proteoliposomes, is activated by increased concentrations of lumenal ions (increased internal ionic strength) (2, 5, 6). This activation is instantaneous both in vivo and in vitro and only requires threshold levels of ionic osmolytes. Moreover, the ionic threshold for activation is highly dependent of the ionic lipid content (charge density) of the membrane and requires the presence of so-called cystathionine β-synthase (CBS) domains, suggesting that the ionic signal is transduced to the transporter via critical interactions of the protein with membrane lipids.The ABC transporter OpuA consists of two identical nucleotide-binding domains (NBD) fused to CBS domains and two identical substrate-binding domains fused to transmembrane domains. The NBD-CBS and substrate-binding domain-transmembrane domain subunits are named OpuAA and OpuABC, respectively. Two tandem CBS domains are linked to the C-terminal end of the NBD; each domain (CBS1 and CBS2) has a β-α-β-β-α secondary structure (5) (Fig. 1A). The CBS domains are widely distributed in most if not all species of life but their function is largely unknown. Most of the CBS domains are found as tandem repeats but data base searches have also revealed tetra-repeat units (5). The crystal structures of several tandem CBS domains have been elucidated (79, 32), and in a number of cases it has been shown that two tandem CBS domains form dimeric structures with a total of four CBS domains per structural module (hereafter referred to as CBS module). The crystal structures of the full-length MgtE Mg2+ transporter confirm the dimeric configuration and show that the CBS domains undergo large conformational changes upon Mg2+ binding or release (10, 11). In general, ABC transporters are functional as dimers, which implies that two tandem CBS domains are present in the OpuA complex. Preliminary experiments with disulfides engineered at the interface of two tandem CBS domains in OpuA suggest that large structural rearrangements (association-dissociation of the interfaces) play a determining role in the ionic strength-regulated transport. Finally, a subset of CBS-containing proteins has a C-terminal extension, which in OpuA is highly anionic (sequence: ADIPDEDEVEEIEKEEENK) and modulates the ion sensing activity (6).Open in a separate windowFIGURE 1.Domain structure of CBS module of OpuA. A, sequence of tandem CBS domains. The predicted secondary structure is indicated above the sequence. The residues modified in this study are underlined. The amino acid sequence end-points of OpuAΔ61 and OpuAΔ119 are indicated by vertical arrows. B, homology model of tandem CBS domain of OpuA. The CBS domains were individually modeled on the crystal structure of the tandem CBS protein Ta0289 from T. acidophilum (PDB entry 1PVM), using Phyre. Ta0289 was used for the initial modeling, because its primary sequence was more similar to the CBS domains of OpuA than those of the other crystallized CBS proteins. The individual domain models were then assembled with reference to the atomic coordinates of the tandem CBS domains of IMPDH from Streptococcus pyogenes (PDB entry 1ZFJ) to form the tandem CBS pair, using PyMOL (DeLano). The positions of the (substituted) cationic residues are indicated.In this study, we have engineered the surface-exposed cationic residues of the CBS module and the C-terminal anionic tail of OpuA (Fig. 1B). The ionic strength and lipid dependence of the OpuA mutants were determined in vivo and in vitro. We show that substitution of five cationic residues for neutral amino acids is sufficient to inactivate the ionic strength sensor and convert OpuA into a constitutively active transporter. Moreover, by substituting six anionic plus four neutral residues of the C-terminal anionic tail for histidines, the transport reaction becomes strongly pH-dependent.  相似文献   

2.
Carbonic anhydrase (CA) (EC 4.2.1.1) enzymes catalyze the reversible hydration of CO2, a reaction that is important in many physiological processes. We have cloned and sequenced a full-length cDNA encoding an intracellular β-CA from the unicellular green alga Coccomyxa. Nucleotide sequence data show that the isolated cDNA contains an open reading frame encoding a polypeptide of 227 amino acids. The predicted polypeptide is similar to β-type CAs from Escherichia coli and higher plants, with an identity of 26% to 30%. The Coccomyxa cDNA was overexpressed in E. coli, and the enzyme was purified and biochemically characterized. The mature protein is a homotetramer with an estimated molecular mass of 100 kD. The CO2-hydration activity of the Coccomyxa enzyme is comparable with that of the pea homolog. However, the activity of Coccomyxa CA is largely insensitive to oxidative conditions, in contrast to similar enzymes from most higher plants. Fractionation studies further showed that Coccomyxa CA is extrachloroplastic.  相似文献   

3.
4.
5.
The Escherichia coli envelope stress response is controlled by the alternative sigma factor, σE, and is induced when unfolded outer membrane proteins accumulate in the periplasm. The response is initiated by sequential cleavage of the membrane-spanning antisigma factor, RseA. RseB is an important negative regulator of envelope stress response that exerts its negative effects onσE activity through its binding to RseA. In this study, we analyze the interaction between RseA and RseB. We found that tight binding of RseB to RseA required intact RseB. Using programs that performed global and local sequence alignment of RseB and RseA, we found regions of high similarity and performed alanine substitution mutagenesis to test the hypothesis that these regions were functionally important. This protocol is based on the hypothesis that functionally dependent regions of two proteins co-evolve and therefore are likely to be sequentially conserved. This procedure allowed us to identify both an N-terminal and C-terminal region in RseB important for binding to RseA. We extensively analyzed the C-terminal region, which aligns with a region of RseA coincident with the major RseB binding determinant in RseA. Both allele-specific suppression analysis and cysteine-mediated disulfide bond formation indicated that this C-terminal region of similarity of RseA and RseB identifies a contact site between the two proteins. We suggest a similar protocol can be successfully applied to pairs of non-homologous but functionally linked proteins to find specific regions of the protein sequences that are important for establishing functional linkage.The Escherichia coli σE-mediated envelope stress response is the major pathway to ensure homeostasis in the envelope compartment of the cell (1-3). σE regulon members encode periplasmic chaperones and proteases, the machinery for inserting β-barrel proteins into the outer membrane and components controlling the synthesis and assembly of LPS (4-6). This pathway is highly conserved among γ-proteobacteria (6).The σE response is initiated when periplasmic protein folding and assembly is compromised (7-9). During steady state growth, σE is inhibited by its antisigma factor, RseA, a membrane-spanning protein whose cytoplasmic domain binds to σE with picomolar affinity (10-13). Accumulation of unassembled porin monomers serves as a signal to activate the DegS protease to cleave RseA in its periplasmic domain (14, 15). This initiates a proteolytic cascade in which RseP cleaves periplasmically truncated RseA near or within the cytoplasmic membrane to release the RseAcytoplasmicE complex, and cytoplasmic ATP-dependent proteases complete the degradation of RseA thereby releasing active σE (16-19).RseB, a second negative regulator of the envelope stress response (11, 20, 21), binds to the periplasmic domain of RseA with nanomolar affinity. RseB is an important regulator of the response (2, 22, 23). It prevents RseP from degrading intact RseA, thereby ensuring that proteolysis is initiated only when the DegS protease is activated by a stress signal (21). Additionally, RseB prevents activated DegS from cleaving RseA, suggesting that interaction of RseB with RseA must be altered before the signal transduction cascade is activated (23).The goal of the present studies was to explore how RseB binds to RseA. The interaction partner of RseB is the unstructured periplasmic domain of RseA (RseA-peri). Within RseA-peri, amino acids ∼169-186 constitute a major binding determinant to RseB (23, 24). This peptide alone binds RseB with 6 μm affinity, and deleting this region abrogates binding to RseB (23). Additional regions of RseA-peri also contribute to RseB binding, as intact RseA-peri binds with 20 nm affinity to RseB (23). Much less is known about the regions of RseB required for interaction with RseA. RseB is homodimeric two-domain protein, whose large N-terminal domain shares structural homology with LolA, a protein that transports lipoproteins to outer membrane (24, 25). The smaller C-terminal domain is connected to the N-terminal domain by a linker, and the two domains share a large interface, which may facilitate interdomain signaling. Glutaraldehyde cross-linking studies indicate that the C-terminal domain interacts with RseA, but the regions of interaction were not identified (25).In the present report, we study the interaction of RseB and RseA. We establish that both domains of RseB interact with RseA-peri. Using a global sequence alignment, we discovered several regions in RseA and RseB that had high sequence similarity, despite the low overall sequence similarity between these two proteins, a finding that was independently confirmed by a local sequence similarity algorithm. This suggested that these regions were functionally dependent, and we performed a set of mutagenesis experiments designed to test this idea. Our studies of the binding properties of these mutants revealed that regions in both the N terminus and C terminus of RseB modulate interaction with RseA. Moreover, genetic suppression analysis and cysteine-mediated disulfide bond formation suggest that the region of RseA/B with highest similarity (RseA residues 165-191 (major binding determinant in RseA) and RseB residues 233-258) are interacting partners.  相似文献   

6.
Activation of protein kinase C (PKC) promotes the salvage pathway of ceramide formation, and acid sphingomyelinase has been implicated, in part, in providing substrate for this pathway (Zeidan, Y. H., and Hannun, Y. A. (2007) J. Biol. Chem. 282, 11549–11561). In the present study, we examined whether acid β-glucosidase 1 (GBA1), which hydrolyzes glucosylceramide to form lysosomal ceramide, was involved in PKC-regulated formation of ceramide from recycled sphingosine. Glucosylceramide levels declined after treatment of MCF-7 cells with a potent PKC activator, phorbol 12-myristate 13-acetate (PMA). Silencing GBA1 by small interfering RNAs significantly attenuated acid glucocerebrosidase activity and decreased PMA-induced formation of ceramide by 50%. Silencing GBA1 blocked PMA-induced degradation of glucosylceramide and generation of sphingosine, the source for ceramide biosynthesis. Reciprocally, forced expression of GBA1 increased ceramide levels. These observations indicate that GBA1 activation can generate the source (sphingosine) for PMA-induced formation of ceramide through the salvage pathway. Next, the role of PKCδ, a direct effector of PMA, in the formation of ceramide was determined. By attenuating expression of PKCδ, cells failed to trigger PMA-induced alterations in levels of ceramide, sphingomyelin, and glucosylceramide. Thus, PKCδ activation is suggested to stimulate the degradation of both sphingomyelin and glucosylceramide leading to the salvage pathway of ceramide formation. Collectively, GBA1 is identified as a novel source of regulated formation of ceramide, and PKCδ is an upstream regulator of this pathway.Sphingolipids are abundant components of cellular membranes, many of which are emerging as bioactive lipid mediators thought to play crucial roles in cellular responses (1, 2). Ceramide, a central sphingolipid, serves as the main precursor for various sphingolipids, including glycosphingolipids, gangliosides, and sphingomyelin. Regulation of formation of ceramide has been demonstrated through the action of three major pathways: the de novo pathway (3, 4), the sphingomyelinase pathway (5), and the salvage pathway (68). The latter plays an important role in constitutive sphingolipid turnover by salvaging long-chain sphingoid bases (sphingosine and dihydrosphingosine) that serve as sphingolipid backbones for ceramide and dihydroceramide as well as all complex sphingolipids (Fig. 1A).Open in a separate windowFIGURE 1.The scheme of the sphingosine salvage pathway of ceramide formation and inhibition of PMA induction of ceramide by fumonisin B1. A, the scheme of the sphingosine salvage pathway of ceramide formation. B, previously published data as to effects of fumonisin B1 on ceramide mass profiles (23) are re-plotted as a PMA induction of ceramide. In brief, MCF-7 cells were pretreated with or without 100 μm fumonisin B1 for 2 h followed by treatment with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. Results are expressed as sum of increased mass of ceramide species. Dotted or open columns represents C16-ceramide or sum of other ceramide species (C14-ceramide, C18-ceramide, C18:1-ceramide, C20-ceramide, C24-ceramide, and C24:1-ceramide), respectively. The data represent mean ± S.E. of three to five values.Metabolically, ceramide is also formed from degradation of glycosphingolipids (Fig. 1A) usually in acidic compartments, the lysosomes and/or late endosomes (9). The stepwise hydrolysis of complex glycosphingolipids eventually results in the formation of glucosylceramide, which in turn is converted to ceramide by the action of acid β-glucosidase 1 (GBA1)2 (9, 10). Severe defects in GBA1 activity cause Gaucher disease, which is associated with aberrant accumulation of the lipid substrates (1014). On the other hand, sphingomyelin is cleaved by acid sphingomyelinase to also form ceramide (15, 16). Either process results in the generation of lysosomal ceramide that can then be deacylated by acid ceramidase (17), releasing sphingosine that may escape the lysosome (18). The released sphingosine may become a substrate for either sphingosine kinases or ceramide synthases, forming sphingosine 1-phosphate or ceramide, respectively (3, 1921).In a related line of investigation, our studies (20, 22, 23) have begun to implicate protein kinase Cs (PKC) as upstream regulators of the sphingoid base salvage pathway resulting in ceramide synthesis. Activation of PKCs by the phorbol ester (PMA) was shown to stimulate the salvage pathway resulting in increases in ceramide. All the induced ceramide was inhibited by pretreatment with a ceramide synthase inhibitor, fumonisin B1, but not by myriocin, thus negating acute activation of the de novo pathway and establishing a role for ceramide synthesis (20, 23). Moreover, labeling studies also implicated the salvage pathway because PMA induced turnover of steady state-labeled sphingolipids but did not affect de novo labeled ceramide in pulse-chase experiments.Moreover, PKCδ, among PKC isoforms, was identified as an upstream molecule for the activation of acid sphingomyelinase in the salvage pathway (22). Interestingly, the PKCδ isoform induced the phosphorylation of acid sphingomyelinase at serine 508, leading to its activation and consequent formation of ceramide. The activation of acid sphingomyelinase appeared to contribute to ∼50% of the salvage pathway-induced increase in ceramide (28) (also, see Fig. 4C). This raised the possibility that distinct routes of ceramide metabolism may account for the remainder of ceramide generation. In this study, we investigated glucocerebrosidase GBA1 as a candidate for one of the other routes accounting for PKC-regulated salvage pathway of ceramide formation.Open in a separate windowFIGURE 4.Effects of knockdown of lysosomal enzymes on the generation of ceramide after PMA treatment. A, MCF-7 cells were transfected with 5 nm siRNAs of each of four individual sequences (SCR, GBA1-a, GBA1-b, and GBA1-c) for 48 h and then stimulated with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of the C16-ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. The data represent mean ± S.E. of three to nine values. B, MCF-7 cells were transfected with 5 nm siRNAs of SCR or GBA1-a (GBA1) for 48 h and then stimulated with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of individual ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. The data represent mean ± S.E. of three to five values. C14-Cer, C14-ceramide; C16-Cer, C16-ceramide; C18-Cer; C18-ceramide; C18:1-Cer, C18:1-ceramide; C20-Cer, C20-ceramide; C20-Cer, C24-ceramide; C24:1-Cer, C24:1-ceramide. C, MCF-7 cells were transfected with 5 nm siRNAs of SCR, acid sphingomyelinase (ASM), or GBA1-a (GBA1) for 48 h following stimulation with (PMA) or without (Control) 100 nm PMA for 1 h. Lipids were extracted, and then the levels of ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. Levels of C16-ceramide are shown. The data represent mean ± S.E. of four to five values. Significant changes from SCR-transfected cells treated with PMA are shown in A–C (*, p < 0.02; **, p < 0.05; ***, p < 0.01).  相似文献   

7.
The genus Planinasus Cresson is revised and includes 18 extant and one fossil species. We clarify the status of the three previously described species and describe 15 new species as follows (type locality in parenthesis): Planinasus aenigmaticus (Colombia. Bogota: Bogota (04°35.8''N, 74°08.8''W)), Planinasus neotropicus (Panama. Canal Zone: Barro Colorado Island (09°09.1''N, 79°50.8''W)), Planinasus kotrbae (Ecuador. Orellana: Rio Tiputini Biodiversity Station (0°38.2''S, 76°08.9''W)), Planinasus miradorus (Brazil. Maranhão: Parque Estadual Mirador, Base da Geraldina (06°22.2''S, 44°21.8''W)), Planinasus tobagoensis (Trinidad and Tobago. Tobago. St. John: Parlatuvier (11°17.9''N, 60°39''W)), Planinasus xanthops (Ecuador. Orellana: Rio Tiputini Biodiversity Station (0°38.2''S, 76°8.9''W)), Planinasus argentifacies (Peru. Madre de Dios: Río Manu, Pakitza (11°56.6''S, 71°16.9''W; 250 m)), Planinasus insulanus (Dominican Republic. La Vega: near Jarabacoa, Salto Guasara (19°04.4''N, 70°42.1''W, 680 m)), Planinasus nigritarsus (Guyana. Conservation of Ecological Interactions and Biotic Associations (CEIBA; ca. 40 km S Georgetown; 06°29.9''N, 58°13.1''W)), Planinasus atriclypeus (Brazil. Rio de Janeiro: Rio de Janeiro, Floresta da Tijuca (22°57.6''S, 43°16.4''W)), Planinasus atrifrons (Bolivia. Santa Cruz: Ichilo, Buena Vista (4-6 km SSE; Hotel Flora y Fauna; 17°29.95''S, 63°33.15''W; 4-500 m)), P. flavicoxalis (West Indies. Dominica. St. David: 1.6 km N of junction of roads to Rosalie and Castle Bruce (15°23.8''N, 61°18.6''W)), Planinasus mcalpineorum (Mexico. Chiapas: Cacahoatan (7 km N; 15°04.1''N, 92°07.4''W)), Planinasus nigrifacies (Brazil. São Paulo: Mogi das Cruzes, Serra do Itapeti (23°31.5''S, 46°11.2''W)), Planinasus obscuripennis (Peru. Madre de Dios: Río Manu, Erika (near Salvación; 12°50.7''S, 71°23.3''W; 550 m)). In addition to external characters, we also describe and illustrate structures of the male terminalia and for Planinasus kotrbae sp. n., the internal female reproductive organs. Detailed locality data and distribution maps for all species are provided. For perspective and to facilitate genus-group and species-group recognition, the family Periscelididae and subfamily Stenomicrinae are diagnosed and for the latter, a key to included genera is provided.  相似文献   

8.
9.
Duvalius (sg. Neoduvalius) gejzadunayi sp. n. from Pećina u Dubokom potoku cave ( Donje Biševo village near Rožaje, Montenegro), the first known representative of this subgenus from the territory of Montenegro is described, illustrated and compared with the related species of the subgenus Neoduvalius Müller, 1913. This new species is characterised by depigmented, medium sized body, totally reduced eyes, deep and complete frontal furrows, 3–4 pairs of discal setae in third elytral stria, as well as by the shape of aedeagus. Data on the distribution and the ecology of this remarkable species, as well as a check-list of the subgenus Neoduvalius are also provided. Recently described genera Serboduvalius Ćurčić, S. B. Pavićević & Ćurčić, B.P.M., 2001, Rascioduvalius Ćurčić, S. B. Brajković, Mitić & Ćurčić, B.P.M., 2003, Javorella Ćurčić, S. B. Brajković, Ćurčić, B.P.M. & Mitić, 2003 and Curcicia Ćurčić, S. B. & Brajković, 2003 are regarded as junior synonyms of the genus Duvalius Delarouzée.  相似文献   

10.
11.
Fibronectin (FN) matrix is crucial for cell and tissue functions during embryonic development, wound healing, and oncogenesis. Assembly of FN matrix fibrils requires FN domains that mediate interactions with integrin receptors and with other FN molecules. In addition, regulation of FN matrix assembly depends on the first two FN type III modules, III1 and III2, which harbor FN-binding sites. We propose that interactions between these two modules sequester FN-binding sites in soluble FN and that these sites become exposed by FN conformational changes during assembly. To test the idea that III1–2 has a compact conformation, we constructed CIIIY, a conformational sensor of III1–2 based on fluorescent resonance energy transfer between cyan and yellow fluorescent proteins conjugated at its N and C termini. We demonstrate energy transfer in CIIIY and show that fluorescent resonance energy transfer was eliminated by proteolysis and by treatment with mild denaturants that disrupted intramolecular interactions between the two modules. We also show that mutations of key charged residues resulted in conformational changes that exposed binding sites for the N-terminal 70-kDa FN fragment. Collectively, these results support a conformation-dependent mechanism for the regulation of FN matrix assembly by III1–2.Fibronectin (FN)3 is a 500-kDa modular dimeric protein and a major component of the extracellular matrix. It exists in the blood and other body fluids as a soluble compact molecule and undergoes cell-mediated assembly to form an insoluble three-dimensional fibrillar matrix (reviewed in Ref. 1). The process of FN matrix assembly has been implicated in embryonic development, wound healing, and cancer (24). FN is composed of type I–III modules, and sets of these modules comprise binding domains for cells and for other extracellular matrix components (see Fig. 1A). Three of these binding domains are essential for matrix assembly (1). Integrin receptor interactions with the cell-binding domain tether disulfide-bonded FN dimers to the cell surface, where FN-FN interactions involving the N-terminal assembly domain form dimers into fibrils. In addition to these essential domains, other FN-binding sites have been implicated in assembly. In particular, the III1–2 FN-binding domain plays a regulatory role in matrix assembly. Within this domain reside a cryptic FN-binding site in III1 and a site available for FN binding in the native form of III2 (58). Recombinant FN lacking III1 is assembled into a matrix at wild-type levels, but that lacking the III1–2 domain results in short immature FN fibrils (8). Peptides derived from the III1–2 domain or antibodies against III1–2 block matrix assembly by cultured cells (911). Furthermore, FN binding to this region is enhanced when FN is mechanically stretched (12). Taken together, these results suggest that conformational changes in the III1–2 domain may control its interactions during FN assembly.Open in a separate windowFIGURE 1.The FN III1–2 FRET conformational sensor. A, representation of the domain structure of FN and major interaction sites. FN is composed of repeating modules that form binding domains for other FN molecules, cell receptors, and other extracellular matrix components as indicated. The first two type III modules III1 and III2 (black), have FN-binding sites and regulate FN matrix assembly. The N-terminal 70-kDa region contains a matrix assembly domain with FN-binding activity. The cell-binding domain (cell), the heparin-binding domain (heparin), the dimerization site (SS), and the alternatively spliced type IIIA (A), IIIB (B), and variable regions (V) are indicated. 70kD, N-terminal 70-kDa FN fragment. B, schematic of proposed model of III1–2 domain conformation. Panel i, in solution, the FN-binding sites in III1 and III2 (hatched areas) are sequestered through domain orientations that are facilitated by the linker between modules (thin line). Panel ii, binding sites are exposed through conformational changes resulting from cell-mediated extension of FN (arrows). The length of the linker and the height and width of the modules are drawn to scale for a linear peptide and published data on FN type III modules, respectively. C, ribbon diagram representation of CIIIY, a FRET sensor of the model in B (panel i), oriented with N and C termini 50 Å apart. CIIIY consists of the III1–2 domain with CFP at the N terminus and YFP at the C terminus.To more fully understand the roles of native and cryptic FN-binding sites in matrix assembly, the conformational dynamics of III1–2 must be characterized. One approach to this problem is to tag III1–2 with fluorescent probes, which, in conjunction with fluorescent resonance energy transfer (FRET), create a molecular conformational sensor. FRET involves the radiationless transfer of energy from an excited donor fluorophore to an acceptor fluorophore, a process that is very sensitive to the distance between the two fluorophores (1315). Two fluorescent protein variants, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), are highly related to green fluorescent protein (GFP). Because the emission spectrum of CFP is well matched to the excitation spectrum of YFP, these two fluorophores have been widely used as a donor-acceptor pair in FRET studies (1315).In this study, we describe a FRET conformational sensor designed to test the idea that intramolecular interactions between III1 and III2 sequester key FN-binding and assembly sites. We show that III1–2 with CFP and YFP fused to the N and C termini, respectively, displays a clear FRET signal, indicating that the attached fluorescent proteins and thus the ends of III1–2 are in close proximity. FRET data from III1–2 mutants support the presence of a stabilizing intermodule salt bridge that regulates FN-binding activity.  相似文献   

12.
13.
The DSM-IV major depression "bereavement exclusion" (BE), which recognizes that depressive symptoms are sometimes normal in recently bereaved individuals, is proposed for elimination in DSM-5. Evidence cited for the BE's invalidity comes from two 2007 reviews purporting to show that bereavement-related depression is similar to other depression across various validators, and a 2010 review of subsequent research. We examined whether the 2007 and 2010 reviews and subsequent relevant literature support the BE's invalidity. Findings were: a) studies included in the 2007 reviews sampled bereavement-related depression groups most of whom were not BE-excluded, making them irrelevant for evaluating BE validity; b) three subsequent studies cited by the 2010 review as supporting BE elimination did examine BE-excluded cases but were in fact inconclusive; and c) two more recent articles comparing recurrence of BE-excluded and other major depressive disorder cases both support the BE's validity. We conclude that the claimed evidence for the BE's invalidity does not exist. The evidence in fact supports the BE's validity and its retention in DSM-5 to prevent false positive diagnoses. We suggest some improvements to increase validity and mitigate risk of false negatives.  相似文献   

14.
Ryanodine receptors (RyR) are Ca2+ channels that mediate Ca2+ release from intracellular stores in response to diverse intracellular signals. In RINm5F insulinoma cells, caffeine, and 4-chloro-m-cresol (4CmC), agonists of RyR, stimulated Ca2+ entry that was independent of store-operated Ca2+ entry, and blocked by prior incubation with a concentration of ryanodine that inactivates RyR. Patch-clamp recording identified small numbers of large-conductance (γK = 169 pS) cation channels that were activated by caffeine, 4CmC or low concentrations of ryanodine. Similar channels were detected in rat pancreatic β-cells. In RINm5F cells, the channels were blocked by cytosolic, but not extracellular, ruthenium red. Subcellular fractionation showed that type 3 IP3 receptors (IP3R3) were expressed predominantly in endoplasmic reticulum, whereas RyR2 were present also in plasma membrane fractions. Using RNAi selectively to reduce expression of RyR1, RyR2, or IP3R3, we showed that RyR2 mediates both the Ca2+ entry and the plasma membrane currents evoked by agonists of RyR. We conclude that small numbers of RyR2 are selectively expressed in the plasma membrane of RINm5F pancreatic β-cells, where they mediate Ca2+ entry.Ryanodine receptors (RyR)3 and inositol 1,4,5-trisphosphate receptors (IP3R) (1, 2) are the archetypal intracellular Ca2+ channels. Both are widely expressed, although RyR are more restricted in their expression than IP3R (3, 4). In common with many cells, pancreatic β-cells and insulin-secreting cell lines express both IP3R (predominantly IP3R3) (5, 6) and RyR (predominantly RyR2) (7). Both RyR and IP3R are expressed mostly within membranes of the endoplasmic (ER), where they mediate release of Ca2+. Functional RyR are also expressed in the secretory vesicles (8, 9) or, and perhaps more likely, in the endosomes of β-cells (10). Despite earlier suggestions (11), IP3R are probably not present in the secretory vesicles of β-cells (8, 12, 13).All three subtypes of IP3R are stimulated by IP3 with Ca2+ (1), and the three subtypes of RyR are each directly regulated by Ca2+. However, RyR differ in whether their most important physiological stimulus is depolarization of the plasma membrane (RyR1), Ca2+ (RyR2) or additional intracellular messengers like cyclic ADP-ribose. The latter stimulates both Ca2+ release and insulin secretion in β-cells (8, 14). The activities of both families of intracellular Ca2+ channels are also modulated by many additional signals that act directly or via phosphorylation (15, 16). Although they commonly mediate release of Ca2+ from the ER, both IP3R and RyR select rather poorly between Ca2+ and other cations (permeability ratio, PCa/PK ∼7) (1, 17). This may allow electrogenic Ca2+ release from the ER to be rapidly compensated by uptake of K+ (18), and where RyR or IP3R are expressed in other membranes it may allow them to affect membrane potential.Both Ca2+ entry and release of Ca2+ from intracellular stores contribute to the oscillatory increases in cytosolic Ca2+ concentration ([Ca2+]i) that stimulate exocytosis of insulin-containing vesicles in pancreatic β-cells (7). Glucose rapidly equilibrates across the plasma membrane (PM) of β-cells and its oxidative metabolism by mitochondria increases the cytosolic ATP/ADP ratio, causing KATP channels to close (19). This allows an unidentified leak current to depolarize the PM (20) and activate voltage-gated Ca2+ channels, predominantly L-type Ca2+ channels (21). The resulting Ca2+ entry is amplified by Ca2+-induced Ca2+ release from intracellular stores (7), triggering exocytotic release of insulin-containing dense-core vesicles (22). The importance of this sequence is clear from the widespread use of sulfonylurea drugs, which close KATP channels, in the treatment of type 2 diabetes. Ca2+ uptake by mitochondria beneath the PM further stimulates ATP production, amplifying the initial response to glucose and perhaps thereby contributing to the sustained phase of insulin release (23). However, neither the increase in [Ca2+]i nor the insulin release evoked by glucose or other nutrients is entirely dependent on Ca2+ entry (7, 24) or closure of KATP channels (25). This suggests that glucose metabolism may also more directly activate RyR (7, 26) and/or IP3R (27) to cause release of Ca2+ from intracellular stores. A change in the ATP/ADP ratio is one means whereby nutrient metabolism may be linked to opening of intracellular Ca2+ channels because both RyR (28) and IP3R (1) are stimulated by ATP.The other major physiological regulators of insulin release are the incretins: glucagon-like peptide-1 and glucose-dependent insulinotropic hormone (29). These hormones, released by cells in the small intestine, stimulate synthesis of cAMP in β-cells and thereby potentiate glucose-evoked insulin release (30). These pathways are also targets of drugs used successfully to treat type 2 diabetes (29). The responses of β-cells to cAMP involve both cAMP-dependent protein kinase and epacs (exchange factors activated by cAMP) (31, 32). The effects of the latter are, at least partly, due to release of Ca2+ from intracellular stores via RyR (3335) and perhaps also via IP3R (36). The interplays between Ca2+ and cAMP signaling generate oscillatory changes in the concentrations of both messengers (37). RyR and IP3R are thus implicated in mediating responses to each of the major physiological regulators of insulin secretion: glucose and incretins.Here we report that in addition to expression in intracellular stores, which probably include both the ER and secretory vesicles and/or endosomes, functional RyR2 are also expressed in small numbers in the PM of RINm5F insulinoma cells and rat pancreatic β-cells.  相似文献   

15.
16.
17.
At 346 kbp in size, the genome of a jumbo bacteriophage vB_KleM-RaK2 (RaK2) is the largest Klebsiella infecting myovirus genome sequenced to date. In total, 272 out of 534 RaK2 ORFs lack detectable database homologues. Based on the similarity to biologically defined proteins and/or MS/MS analysis, 117 of RaK2 ORFs were given a functional annotation, including 28 RaK2 ORFs coding for structural proteins that have no reliable homologues to annotated structural proteins in other organisms. The electron micrographs revealed elaborate spike-like structures on the tail fibers of Rak2, suggesting that this phage is an atypical myovirus. While head and tail proteins of RaK2 are mostly myoviridae-related, the bioinformatics analysis indicate that tail fibers/spikes of this phage are formed from podovirus-like peptides predominantly. Overall, these results provide evidence that bacteriophage RaK2 differs profoundly from previously studied viruses of the Myoviridae family.  相似文献   

18.
Jaskuła R 《ZooKeys》2011,(100):487-502
The tiger beetle fauna of the Balkan Peninsula is one of the richest in Europe and includes 19 species or 41% of the European tiger beetle fauna. Assembled by their biogeographical origins, the Balkan tiger beetle species fall into 14 different groups that include, Mediterranean, Middle Oriental, Central Asiatic, Euro-Siberian, South and East European, Pannonian-Sarmatian, West Palaearctic, Turano-European and Afrotropico Indo-Mediterranean species. The Mediterranean Sclerophyl and the Pontian Steppe are the Balkan biogeographical provinces with the highest species richness, while the Balkan Highlands has the lowest Cicindelidae diversity. Most species are restricted to single habitat types in lowland areas of the Balkan Peninsula and only Calomera aulica aulica and Calomera littoralis nemoralis occur in respectively 3 and 4 different types of habitat. About 60% of all Balkan Cicindelidae species are found in habitats potentially endangered by human activity.  相似文献   

19.
20.
A new enzyme, rhamnogalacturonan (RG) α-d-galactopyranosyluronohydrolase (RG-galacturonohydrolase), able to release a galacturonic acid residue from the nonreducing end of RG chains but not from homogalacturonan, was purified from an Aspergillus aculeatus enzyme preparation. RG-galacturonohydrolase acted with inversion of anomeric configuration, initially releasing β-d-galactopyranosyluronic acid. The enzyme cleaved smaller RG substrates with the highest catalytic efficiency. A Michaelis constant of 85 μm and a maximum reaction rate of 160 units mg−1 was found toward a linear RG fragment with a degree of polymerization of 6. RG-galacturonohydrolase had a molecular mass of 66 kD, an isoelectric point of 5.12, a pH optimum of 4.0, and a temperature optimum of 50°C. The enzyme was most stable between pH 3.0 and 6.0 (for 24 h at 40°C) and up to 60°C (for 3 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号