首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O'Brien TW 《IUBMB life》2003,55(9):505-513
Mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. Typical of mammalian mitochondrial ribosomes, the bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes, to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Human mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system.  相似文献   

2.
Mammalian mitochondrial ribosomes are distinguished from their bacterial and eukaryotic-cytoplasmic counterparts, as well as from mitochondrial ribosomes of lower eukaryotes, by their physical and chemical properties and their high protein content. However, they do share more functional homologies with bacterial ribosomes than with cytoplasmic ribosomes. To search for possible homologies between mammalian mitochondrial ribosomes and bacterial ribosomes at the level of initiation factor binding sites, we studied the interaction of Escherichia coli initiation factor 3 (IF3) with bovine mitochondrial ribosomes. Bacterial IF3 was found to bind to the small subunit of bovine mitochondrial ribosomes with an affinity of the same order of magnitude as that for bacterial ribosomes, suggesting that most of the functional groups contributing to the IF3 binding site in bacterial ribosomes are conserved in mitochondrial ribosomes. Increasing ionic strength affects binding to both ribosomes similarly and suggests a large electrostatic contribution to the reaction. Furthermore, bacterial IF3 inhibits the Mg2+-dependent association of mitochondrial ribosomal subunits, suggesting that the bacterial IF3 binds to mitochondrial small subunits in a functional way.  相似文献   

3.
1. Mitochondrial and cytoplasmic ribosomes of Euglena gracilis differ in their total RNA and protein content. 2. Mitochondrial ribosomes dissociate to subunits at higher Mg(2+) concentrations than do cytoplasmic ribosomes. 3. A separable 5S RNA is obtained from cytoplasmic and chloroplast ribosomes, but not from mitochondrial ribosomes. 4. For protein-synthesizing activity with a natural mRNA, mitochondrial ribosomes use tRNA from any cell compartment and are partly active with supernatant enzymes from cytoplasm. Cytoplasmic ribosomes are partly active with enzymes and tRNA from mitochondria or chloroplasts. 5. Both mitochondrial and cytoplasmic ribosomes show high specificity for the homologous salt-extractable ribosomal fraction for protein-synthesizing activity.  相似文献   

4.
Characterization of ribosomes from dormant spores and vegetative cells of Bacillus cereus strain T has been carried out. Polyuridylic acid binding activity, ribonuclease activity associated with ribosomes, thermal denaturation profile, and sedimentation coefficients are essentially identical for both ribosomal preparations. However, ribosomal protein content of dormant spore ribosomes is about 70% of that of vegetative ribosomes. Polyacrylamide gel electrophoresis of ribosomal proteins shows that some ribosomal proteins are missing from dormant spore ribosomes. Sucrose density gradient centrifugation of ribosomes shows the existence of defective ribosomal subunits, in addition to 30S and 50S subunits, in dormant spore ribosomes. These results indicate that the ribosomes from dormant spores are distinctively different from those of vegetative cells.  相似文献   

5.
Cytoplasmic free and membrane-bound ribosomes were isolated from bovine adrenal cortex, and characterized. Contributions of free and bound ribosomes to the synthesis of NADPH-adrenodoxin reductase (AdR) and adrenodoxin (Ad) were determined by examining the presence of their nascent peptides on isolated ribosomes. Nascent peptides were released from the ribosomes by [3H]puromycin in a high salt buffer in the presence of a detergent, and the nascent peptides of AdR and Ad were separately isolated by immunoprecipitation using antibodies. AdR nascent peptides were associated with free and loosely-bound ribosomes, whereas Ad nascent peptides were associated with free, loosely-bound and tightly-bound ribosomes. Smaller nascent peptides of AdR were carried by free ribosomes, whereas larger nascent peptides were preferentially carried by loosely-bound ribosomes. In the case of Ad, smaller nascent peptides were more abundant in free ribosomes than in bound ribosomes. The nascent peptides of Ad were released from bound ribosomes of rough microsomes to the aqueous milieu by puromycin treatment, suggesting the release of completed Ad peptides into the cytoplasm in cells.  相似文献   

6.
O'Brien TW 《Gene》2002,286(1):73-79
Mitochondrial ribosomes comprise the most diverse group of ribosomes known. The mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. The bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Mammalian mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system. Interest is growing in the structure, organization, chromosomal location and expression of genes for human MRPs. Proteins which are essential for mitoribosome function are candidates for involvement in human genetic disease.  相似文献   

7.
1. Rapidly labelled RNA from rat liver, either as a complex with DNA (m-RNA-DNA) or with ribosomal RNA (m-RNA-RNA) binds to ribosomes in the polysome region. No binding could be demonstrated with ribosomal RNA or native DNA from Bacillus subtilis. 2. With ribosomes from rat liver, Escherichia coli or hepatoma the m-RNA-DNA stimulated incorporation of amino acids with rat-liver ribosomes only, whereas the m-RNA-RNA complex was effective with ribosomes from E. coli or the hepatoma. 3. Polyuridylic acid was effective as messenger RNA with all three ribosomes but much greater stimulation was obtained with ribosomes from E. coli and the hepatoma. 4. The degree of incorporation of phenylalanine with polyuridylic acid and ribosomes from a hepatoma was decreased by about 50% when ribosomal RNA was present.  相似文献   

8.
Membrane-bound ribosomes were separated into two distinct classes (loosely-bound and tightly-bound ribosomes) by treatment with 0.6 M KCl, 1 mM puromycin, 0.05% DOC, or 10 mM EDTA. It was also confirmed that any one of these reagents except for EDTA dissociated the same class of ribosomes from the membrane. A population of lighter microsomal vesicles was formed from rough microsomes upon the dissociation of loosely-bound ribosomes by treatment with these chemicals. Rough microsomes were subfractionated into lighter and heavier fractions, L-rMs and H-rMs, by centrifugation using a discontinuous gradient of sucrose consisting of 1.3 M, 1.5 M, and 2.1 M solutions. It was found that L-rMs was rich in loosely-bound ribosomes, whereas H-rMs contained a high proportion of tightly-bound ribosomes. It is likely that loosely-bound and tightly-bound ribosomes are heterogeneously distributed among rough microsomal vesicles. Loosely-bound ribosomes and tightly-bound ribosomes synthesize different kinds of proteins. Two microsomal membrane proteins, NADPH-cytochrome c reductase and cytochrome b5, were exclusively synthesized by loosely-bound ribosomes, whereas serum albumin, which is a major component of the secretory proteins of hepatocytes, was synthesized only by tightly-bound ribosomes. Since the nascent peptides of NADPH-cytochrome c reductase and cytochrome b5 are released from bound ribosomes to the cytoplasmic surface of endoplasmic reticulum, while those of secretory proteins are discharged into the lumen across the membrane, the strength of the association between ribosomes and microsomal membrane seems to be correlated with the direction of release of nascent peptides.  相似文献   

9.
Ribosomal particles were isolated from chloroplasts and cytoplasm of eukaryotes, Euglena gracilis and Spinacia oleracea, and from prokaryotes, E. coli and Anacystis nidulans. The ribosomes were analyzed by polyacrylamide gel electrophoresis and by negative staining in the electron microscope. The prokaryote ribosomes show a slight difference in their electrophoretic mobilities between the two species: E. coli ribosomes migrate ahead of the Anacystis ribosomes. In comparison to eukaryote cytoplasmic ribosomes, chloroplast ribosomes of both species demonstrate a higher electrophoretic mobility and significantly smaller dimensions (about 230 × 187 Å compared to about 197 × 162 Å). Some differences in form were noted for Euglena cytoplasmic ribosomes which may contribute to their high S value. In comparison to prokaryote ribosomes, the mobility of chloroplast ribosomes is similar to the mobility of the prokaryote group of ribosomes, and it specifically coincides with the migrating band of ribosomes from the blue-green alga, Anacystis. Subunits of chloroplast and prokaryote ribosomes have similar mobilities and cannot be distinguished in gels. The similarities in size and in electrophoretic mobilities of chloroplast and blue-green algal ribosomes support the hypothesis of a common phylogenetic origin for the two.  相似文献   

10.
Ribosomes were isolated from three mesophilic and three thermophilic strains of Bacillus. The ribosomes consisted of about 55% protein and 45% ribonucleic acid. Average ratios for the absorbance at 260/235 and 260/280 mmu were 1.77 and 1.92 for the mesophiles and 1.63 and 1.84 for the thermophiles. Ultracentrifugation revealed mainly components with sedimentation coefficients of about 30, 50, 70, 100, and 120S. All the preparations were shown to contain a ribonuclease which, in the presence of ethylenediaminetetraacetic acid, led to ribosome breakdown as measured by the increase in acid-soluble nucleotides. The stability of the ribosomes from the thermophiles was consistently greater than that of the ribosomes from the mesophiles. After 5 hr at 37 C, the breakdown was about 80% for the ribosomes from the mesophiles and 55 to 70% for those from the thermophiles. At 60 C, the ribosomes from the mesophiles were broken down slightly more and at a faster rate than those from the thermophiles. At temperatures above 60 C, the breakdown was again more pronounced for the ribosomes from the mesophiles.  相似文献   

11.
Ribosome recycling factor (RRF), elongation factor G (EF-G) and GTP split 70S ribosomes into subunits. Here, we demonstrated that the splitting was transient and the exhaustion of GTP resulted in re-association of the split subunits into 70S ribosomes unless IF3 (initiation factor 3) was present. However, the splitting was observed with sucrose density gradient centrifugation (SDGC) without IF3 if RRF, EF-G and GTP were present in the SDGC buffer. The splitting of 70S ribosomes causes the decrease of light scattering by ribosomes. Kinetic constants obtained from the light scattering studies are sufficient to account for the splitting of 70S ribosomes by RRF and EF-G/GTP during the lag phase for activation of ribosomes for the log phase. As the amount of 70S ribosomes increased, more RRF, EF-G and GTP were necessary to split 70S ribosomes. In the presence of a physiological amount of polyamines, GTP and factors, even 0.6 μM 70S ribosomes (12 times higher than the 70S ribosomes for routine assay) were split. Spermidine (2 mM) completely inhibited anti-association activity of IF3, and the RRF/EF-G/GTP-dependent splitting of 70S ribosomes.  相似文献   

12.
1. Methods for the separation of membrane-bound and free ribosomes from rat brain (cortex) and skeletal muscle were described and the preparations characterized by chemical analysis and electron microscopy. The attachment of ribosomes to membranes is not an artifact of the separation procedure. 2. The rate of incorporation of l-[(14)C]leucine into protein in vitro by the membrane-bound and free ribosomes from these two predominantly non-protein-secreting tissues is compared with that by similar preparations from rat liver. With all three tissues the initial rate was higher for the membrane-bound preparations. 3. By using the technique of discharging nascent polypeptide chains by incubation with puromycin followed by treatment with sodium deoxycholate (Redman & Sabatini, 1966), a major difference was observed for the vectorial discharge of nascent protein synthesized both in vivo and in vitro on membrane-bound ribosomes from liver, on the one hand, and brain and muscle, on the other. Whereas a large part of nascent protein synthesized on membrane-bound liver ribosomes was discharged into the membranous vesicles (presumably destined for export from the cell), almost all nascent protein from membrane-bound ribosomes from brain and muscle was released directly into the supernatant. Incorporation of [(3)H]puromycin into peptidyl-[(3)H]puromycin confirmed these findings. There was thus no difference between membrane-bound and free ribosomes from brain on the one hand, and from free polyribosomes from liver on the other, as far as the vectorial release of newly synthesized protein was concerned. 4. Incubation with puromycin also showed that the nascent chains, pre-formed in vivo and in vitro, are not involved in the attachment of ribosomes to membranes of the endoplasmic reticulum. 5. The differences in vectorial discharge from membrane-bound ribosomes from liver as compared with brain and muscle are not due to the different types of messenger RNA in the different tissues. Polyphenylalanine synthesized on incubation with polyuridylic acid was handled in the same way as polypeptides synthesized with endogenous messenger. 6. It is concluded that there is a major difference in the attachment of ribosomes to the membranes of the endoplasmic reticulum of secretory and non-secretory tissues, which results in a tissue-specific difference in the vectorial discharge of nascent proteins.  相似文献   

13.
An improved method for the isolation of Euglena chloroplast ribosomes is described which presents a number of advantages over past procedures. First, ribosomes are prepared from whole cell extracts, thus bypassing the need to isolate intact chloroplasts and resulting in a 10-fold improvement in yield. Second, the inclusion of 40 mm Mg2+ in the preparation buffers, while stabilizing the chloroplast ribosomes, precipitates and, thereby, virtually eliminates the cytoplasmic 89 S ribosomes. Third, greater than 95% of the chloroplast ribosomes sediment at 68 S rather than as the damaged 53 S particle frequently generated in other preparation procedures. Fourth, even with a high-salt wash to remove endogenous factors, the chloroplast ribosomes still sediment at 68 S and are just as active in in vitro protein synthesis as are E. coli ribosomes. These ribosomes have been tested for activity with elongation factors from prokaryotes, eukaryotes, and the chloroplast itself, and the results have been compared to those obtained with E. coli and wheat germ ribosomes. The data may be summarized as follows: (a) Chloroplast ribosomes use E. coliEF-TuTs and EF-G with the same efficiency as do E. coli ribosomes in protein synthesis, (b) E. coli and chloroplast ribosomes can use Euglena chloroplast EF-G to catalyze translocation, but wheat germ ribosomes cannot, (c) Wheat germ EF-1H and EF-2 are highly active in polymerization with wheat germ ribosomes, but ribosomes from neither E. coli nor the chloroplast are able to recognize these factors, (d) All three types of ribosomes accept Phe-tRNA from E. coli EF-Tu although to differing degrees. However, neither chloroplast nor E. coli ribosomes recognize wheat germ EF-1H for the binding of Phe-tRNA.  相似文献   

14.
Protein synthesis by ribosomes from the meristematic region of pea roots (0–0·3 cm) and 2-day-old corn shoots (young tissues) relative to ribosomes from matured regions of pea roots (2·0–2·5 cm) and 10-day-old corn leaves (aged tissues) was compared in the poly U-phenylalanine system. With normal polyribosome preparations, ribosomes from young tissues required approx. 16 mM Mg2+ while ribosomes from aged tissues required 20–22 mM Mg2+ for optimal activity. With monomeric ribosome preparations induced by anaerobic treatment of the seedlings, the Mg2+ optimum was 20–22 mM for ribosomes from both young and aged tissues. A higher level of peptidyl-tRNA in ribosomes from young tissues accounts, at least in part, for the differences in Mg2+ optima between ribosomes from young and aged tissues. Monomeric ribosomes were used for assaying the activity of ribosomes per se. Ribosomes from young pea root tips and ribosomes from 2-day-old corn shoots were 25–30% and 100–150% more active, respectively, than the corresponding ribosomes from aged tissues. Differences in ribosomal proteins revealed by gel electrophoresis correlated with the change in ribosomal activity. Reduced activity in the aged ribosomes was not due to RNase activity or inhibitors.  相似文献   

15.
In the present study, the physiochemical properties of rat liver mitochondrial ribosomes were examined and compared with Escherichia coli ribosomes. The sedimentation and translational diffusion coefficients as well as the molecular weight and buoyant density of rat mitochondrial ribosomes were determined. Sedimentation coefficients were established using the time-derivative algorithm (Philo, J. S. (2000) Anal. Biochem. 279, 151-163). The sedimentation coefficients of the intact monosome, large subunit, and small subunit were 55, 39, and 28 S, respectively. Mitochondrial ribosomes had a particle composition of 75% protein and 25% RNA. The partial specific volume was 0.688 ml/g, as determined from the protein and RNA composition. The buoyant density of formaldehyde-fixed ribosomes in cesium chloride was 1.41 g/cm(3). The molecular masses of mitochondrial and E. coli ribosomes determined by static light-scattering experiments were 3.57 +/- 0.14 MDa and 2.49 +/- 0.06 MDa, respectively. The diffusion coefficient obtained from dynamic light-scattering measurements was 1.10 +/- 0.01 x 10(-7) cm(2) s(-1) for mitochondrial ribosomes and 1.72 +/- 0.03 x 10(-7) cm(2) s(-1) for the 70 S E. coli monosome. The hydration factor determined from these hydrodynamic parameters were 4.6 g of water/g of ribosome and 1.3 g/g for mitochondrial and E. coli ribosomes, respectively. A calculated hydration factor of 3.3 g/g for mitochondrial ribosomes was also obtained utilizing a calculated molecular mass and the Svedberg equation. These measurements of solvation suggest that ribosomes are highly hydrated structures. They are also in agreement with current models depicting ribosomes as porous structures containing numerous gaps and tunnels.  相似文献   

16.
The ability to maintain intact ribosomes in the mass spectrometer has enabled research into their changes in conformation and interactions. In the mass spectrometer, it is possible to induce dissociation of proteins from the intact ribosome and, in conjunction with atomic structures, to understand the factors governing their release. We have applied this knowledge to interpret the structural basis for release of proteins from ribosomes for which no high resolution structures are available, such as complexes with elongation factor G and ribosomes from yeast. We also describe how improvements in technology and understanding have widened the scope of our research and lead to dramatic improvements in quality and information available from spectra of intact ribosomes.  相似文献   

17.
Monoribosomes from unfertilized eggs of Strongylocentrotus purpuratus were shown to translate mRNA less efficiently than ribosomes derived from polyribosomes of embryos, as measured by globin synthesis in a ribosome-dependent rabbit reticulocyte lysate [Danilchik, M. V., & Hille, M. B. (1981) Dev. Biol. 84, 291-298]. Data presented in this paper show that monoribosomes from 16-cell and blastula embryos resemble monoribosomes from unfertilized eggs in translational capacity and are less active than the ribosomes associated with polyribosomes. Thus, we find two distinct populations of ribosomes in embryos. We define the less active monoribosome population as "naive" ribosomes and the more active, functioning polysome-derived ribosomes as "experienced" ribosomes. Naive and experienced ribosomes have the same elongation rates. The relationship between ionic triggers and the conversion of monoribosomes to experienced ribosomes was studied with the Ca2+ ionophore A23187, which releases intracellular Ca2+ stores, and NH4Cl, which alkalinizes the cytoplasm. We found that ribosomes in the monoribosome populations from A23187-activated eggs or from NH4Cl-activated eggs resembled naive monoribosomes from unfertilized eggs in their translational activity. In contrast, ribosomes derived from the polysomes of NH4Cl-treated eggs were as active as the experienced polysome-derived ribosomes from normal embryos. Eggs activated with A23187 did not produce polyribosomes. The presence of significant amounts of experienced ribosomes in NH4Cl-treated eggs implicates alkalinization of the cytoplasm as a stimulus for ribosome activation, which occurs slowly during initial development.  相似文献   

18.
The kinetics of MS2 ribonucleic acid (RNA) directed protein synthesis have been investigated at seven temperatures between 30 and 47 degrees C by using ribosomes isolated from a wild type strain and seven temperature-sensitive mutants of Escherichia coli. The amount of MS2 coat protein formed at each temperature was determined by gel electrophoresis of the products formed with control ribosomes. With ribosomes from each of the mutant strains, the activation energy required to drive protein synthesis below the maximum temperature (up to 40 degrees C) was increased relative to the control (wild type) activity. Preincubation of the ribosomes at 44 degrees C revealed the kinetics of thermal inactivation, with ribosomes from each of the mutants having a half-life for inactivation less than that of the control ribosomes. A good correlation was observed between the relative activity of the different ribosomes at 44 degrees C and their relative rate of thermal inactivation. Mixing assays allowed the identification of a temperature-sensitive ribosomal subunit for each of the mutants. Defects in one or more of three specific steps in protein synthesis (messenger RNA binding, transfer RNA binding, transfer RNA binding, and subunit reassociation) were identified for the ribosomes from each mutant. The relationship between temperature sensitivity and protein synthesis in these strains is discussed.  相似文献   

19.
Ribosomes fromBlastocladiella emersonii zoospores stimulatein vitro protein synthesis in a system using soluble factors extracted from wheat germ. Aurintricar☐ylic acid inhibits less than 40% of thein vitro protein synthetic activity of the zoospore ribosomes, indicating that messenger RNA is already complexed to the ribosomes. In addition to the mRNA complexed to the ribosomes, zoospores contain an mRNA fraction which is not bound to the ribosomes. Extraction of RNA from zoospore ribosomes and deacylation followed by reacylation with labeled amino acids demonstrated the presence of tRNA molecules specific for methionine and other amino acids on zoospore ribosomes. Transfer RNA from zoospore ribosomes contained 9.8% methionyl-tRNA compared to 2.4% methionyl-tRNA bound to ribosomes isolated from growth-phase plants. The fourfold enrichment of methionyl-tRNA on zoospore ribosomes suggests that between 12 and 25% of the zoospore ribosomes exist in arrested 80 S initiation complexes. Collectively, the data indicate that zoospore ribosomes complexed to mRNA have completed initiation and are somehow blocked at one or more of the elongation steps of protein synthesis. The data are compatible with the idea that an inhibitor is associated with the zoospore ribosomesin vivo.  相似文献   

20.
We have developed a novel chromatography for the rapid isolation of active ribosomes from bacteria without the use of harsh conditions or lengthy procedures that damage ribosomes. Ribosomes interact with an alkyl linker attached to the resin, apparently through their RNA component. Examples are given with ribosomes from Escherichia coli, Deinococcus radiodurans, and with clinical isolates of Streptococcus pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA). The ribosomes obtained by this method are unusually intact, so that highly active ribosomes can now be isolated from the clinical isolates, enabling significantly improved in vitro functional assays that will greatly assist the discovery and development of new ribosomally targeted antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号