首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of desheptapeptide (B24-B30) insulin (DHPI) in a new crystal form (form B) has been determined and refined to 0.2 nm resolution. The crystals were obtained under the same crystallization condition as previously reported crystal form (form A). The overall structures of the two crystal forms are similar but obvious differences can be observed in crystal packing and local conformation. The crystal structures of the two forms show that the two independent molecules in an asymmetric unit from a DHPI dimer, and the dimer formation buries more than 18.20 and 16.95 nm~2 of solvent accessible surfaces for form A and form B DHPI, respectively, the largest among insulin and insulin analogs ever reported. Close examination at crystal packing shows that the dimer-forming surface of DHPI, namely Surface Ⅱ, is normally present in the association of insulin and insulin analogs in their crystal structures. The results demonstrate that Surface Ⅱ is crucially important for the formation of two crystal form  相似文献   

2.
The structure of desheptapeptide (B24–B30) insulin (DHPI) in a new crystal form (form B) has been determined and refined to 0.2 nm resolution. The crystals were obtained under the same crystallization condition as previously reported crystal form (form A). The overall structures of the two crystal forms are similar but obvious differences can be observed in crystal packing and local conformation. The crystal structures of the two forms show that the two independent molecules in an asymmetric unit from a DHPI dimer, and the dimer formation buries more than 18.20 and 16.95 nm2 of solvent accessible surfaces for form A and form B DHPI, respectively, the largest among insulin and insulin analogs ever reported. Close examination at crystal packing shows that the dimer-forming surface of DHPI, namely Surface II, is normally present in the association of insulin and insulin analogs in their crystal structures. The results demonstrate that Surface II is crucially important for the formation of two crystal forms under the same crystallization condition.  相似文献   

3.
Using the crystal structure of Despentapeptide (B26-B30) insulin (DPI) as the search model, the crystal structure of DesBl-B2 Despentapeptide (B26-B30) insulin (DesBl-2 DPI) has been studied by the molecular replacement method. There is one DesBl-2 DPI molecule in each crystallographic asymmetric unit. The cross rotation function search and the translation function search show apparent peaks and thus determine the orientation and position of DesBl-2 DPI molecule in the cell respectively. The subsequent three-dimensional structural rebuilding and refine-ment of DesBl-2 DPI molecule confirm the results by molecular replacement method.  相似文献   

4.
报道了将单体胰岛素前体(MIP)经胰蛋白酶和羧肽酶B两步连续酶切获得B链C端去四肽胰岛素(DTI)的方法。MIP由甲醇酵母表达,最高发酵表达量达到150mg/L。发酵液中MIP通过疏水层析,分子筛初步纯化后直接进行酶切,在胰蛋白酶酶切3h后加入抑制剂paminobenzamidine处理15min,然后直接加入羧肽酶B酶切6h,再通过反相柱纯化即可得到纯品DTI,从分子筛到最后DTI,总纯化得率达到77%。按中国药典小白鼠惊厥法测定得DTI的生物活力为22IU/mg,是胰岛素的80%,在Superdex G-75分子筛上测定DTI的解离聚合曲线,证明其是单体。  相似文献   

5.
The water structure of rhombohedral 2 Zn insulin crystal which contains about 280 water molecules and 0.55-0.60 mol citrate molecules per dimer has been studied by X-ray crystallographic refinement with 1.1 A resolution data. Atomic parameters of 83 fully occupied and 258 partially occupied water molecules and 0.3 mol of citrate were obtained. Full matrix least-squares method with isotropic temperature factor was used for the refinement of partially occupied water molecules. The water molecules in this crystal exist in one of the three states: fully occupied water, partially occupied water and water continuum, and a schematic model of water structure in protein crystal was proposed. The flexibility of water molecules is described.  相似文献   

6.
本文用分子动力学的方法对去七肽胰岛素(DHPI)分子的构象进行了研究,首先用分子动力学方法对晶体胰岛素分子的构象能进行了优化,然后除去B链C端的最后七个残基(B24—B30),做分子动力学模拟,得到了DHPI的平衡构象和均方差波动。胰岛素分子的X射线晶体衍射结构和能量优化构象之间的均方根偏差为0.1;所得DHPI构象和胰岛素能量优化构象间C原子间的均方根偏差为1.8。变化最大的区域是A8—A10,A18—A21,B1—B41和B18—B23。  相似文献   

7.
Using the crystal structure of Despentapeptide (B26-B30) insulin (DPI as the search model, the crystal structure of DesB1-B2 Despentapeptide (B26-B30) insulin (DesB1-2 DPI) has been studied by the molecular replacement method. There is one DesB1-2 DPI molecule in each crystallographic asymmetric unit. The cross rotation function search and the translation function search show apparent peaks and thus determine the orientation and position of DesB1-2 DPI molecule in the cell respectively. The subsequent three-dimensional structural rebuilding and refinement of DesB1-2 DPI molecule confirm the results by molecular replacement method.  相似文献   

8.
S G Melberg  W C Johnson 《Proteins》1990,8(3):280-286
Vacuum UV circular dichroism spectra measured down to 178 nm for hexameric 2-zinc human insulin, zinc-free human insulin, and the two engineered and biologically active monomeric mutants, [B/S9D] and [B/S9D,T27E] human insulin, show significant differences. The secondary structure analysis of the 2-zinc human insulin (T6) in neutral solution was determined: 57% helix, 1% beta-strand, 18% turn, and 24% random coil. This is very close to the corresponding crystal structure showing that the solution and solid structures are similar. The secondary structure of the monomer shows a 10-15% increase in antiparallel beta-structure and a corresponding reduction in random coil structure. These structural changes are consistent with an independent analysis of the corresponding difference spectra. The advantage of secondary structure analyses of difference spectra is that the contribution of odd spectral features stemming mainly from side chain chromophores is minimized and the sensitivity of the analyses improved. Analysis of the CD spectra of T6 2-zinc, zinc-free human insulin and monomeric mutant insulin by singular value decomposition indicates that the secondary structure changes following the dissociation of hexamers into dimers and monomers are two-state processes.  相似文献   

9.
The immune responses to several antigens were compared in the I-A mutant mouse strain B6.C-H-2bm12 and the wild-type strain C57BL/6. With a lymph node cell proliferation assay, the response to two of these antigens, beef insulin and (TG)A-L, was demonstrated to be controlled by a gene in the I-Ab region. B6.C-H-2bm12 mice failed to respond to beef insulin, while their responses to (TG)A-L, DNP-OVA and PPD were comparable with those of the wild-type strain C57BL/6. Taken together with previous studies, these data suggest that the product of a single pleiotropic I-A gene, an la molecule, functions as a histocompatibility, la, and MLR antigen, as well as a necessary component for Ir gene function. Furthermore, the data reported here demonstrate that la molecules have multiple functional “Ir determinants,” one of which has been altered in the B6.C-H-2bm12 mutant. The B6.C-H-2bm12 mice, therefore, represent a powerful analytical tool for the understanding of the cellular and molecular basis for Ir gene control of the immune response.  相似文献   

10.
Structure of oxidized thioredoxin to 4 with 5 A resolution   总被引:3,自引:0,他引:3  
The structure of the oxidized form of Escherichia coli thioredoxin, space group C2, has been determined from X-ray crystallographic data, to a resolution of 4.5 Å using two heavy-atom derivatives, platinum diaminedichloride and 3-pyridyl mercuric chloride. The electron density maps show the molecular shape and the packing of the thioredoxin molecules as well as the positions of the cupric ions necessary for crystallization of thioredoxin. The shape of the thioredoxin molecule is ellipsoidal with approximate dimensions 25 Å × 34 Å × 35 Å. The two thioredoxin molecules in the asymmetric unit appear very similar. They are related by a translation vector with components (0, 0.1, 0.5) along the axis of the unit cell and not by a 2-fold rotation axis. Each of the two molecules in the asymmetric unit belongs to separate infinite layers of molecules parallel to the xy plane. The basic unit in these layers is a dimer formed by interaction of two thioredoxin molecules across the crystallographic 2-fold axis. The structural role of the cupric ions in the crystal lattice is to bridge these dimers within the layers.  相似文献   

11.
Several semisynthetic analogues of human insulin were prepared by enzyme-assisted coupling of synthetic octapeptides to the C-terminal of porcine desoctapeptide insulin. We report the receptor-binding and biological properties of [LeuB24]- and [LeuB25]-insulins, one of which has the same sequence as a “mutant” insulin recently found in a diabetic patient (Tager, H. et al.(1979) Nature 28:121–125). [LeuB24]- and [LeuB25]-insulins had, respectively, 8–12% and 0.9–1.1% of the binding affinity of human insulin, and 11% and 2.7% of its potency in stimulating lipogenesis in isolated rat fat cells. Neither one was an antagonist of the biological effects of native insulin. While the ability of [LeuB24]-insulin to induce negative cooperativity was clearly impaired, that of [LeuB25]-insulin was almost abolished. [LeuB25]-insulin was also a potent antagonist of the negative cooperativity induced by native insulin.  相似文献   

12.
Previous crystallographic analyses of the Kunitz inhibitors from soybean. Erythrina caffra and wheat, the interleukins-1 beta and 1 alpha and the acidic and basic fibroblast growth factors have shown that they contain a most unusual fold. It is formed by six two-stranded hairpins. Three of these form a barrel structure and the other three are in a triangular array that caps the barrel. The arrangement of the secondary structures gives the molecules a pseudo 3-fold axis. Although the different proteins have very similar structures, many of their sequences have no significant similarities overall. The structural determinants of this fold are described and discussed in this paper. The barrels in the different proteins have the same geometrical features: six strands tilted at 56 degrees to the barrel axis; a barrel diameter of 16 A, and the beta-sheet hydrogen bonded so that it is staggered with a shear number of 12. These features fit McLachlan's equations for ideal barrels formed by beta-sheets. The wide diameter of the barrels is filled by layers of residues that, while not identical in the different proteins, are, in almost all cases, large. The structure of the triangular array of hairpins is determined by the coiling of the strands and the packing of hairpin residues against each other and against residues from the interior of the barrel. The major sequence requirements of this fold are large or medium hydrophobic residues at 18 buried sites. In the different structures the total volume of these residues is 3000 (+/- 120) A. The polyhedron model of protein architecture is used to demonstrate that the main, and in particular the symmetrical, features of this fold arise from the ideal and equal packing of six hairpins, modified only slightly to form hydrogen bonds between the hairpins.  相似文献   

13.
A modified model was proposed for the tertiary structure of the coat protein (CP) molecules in potato virus X (PVX) virions, similar to the original model of 2001 describing the structure of CP of potato virus A, a member of another group of filamentous viruses. According to the new model, CP comprises two main structural domains, namely, a bundle of α-helices, located near the long axis of the virion, and the socalled RNP fold (or abCd fold), located in the vicinity of its surface. The model made it possible to suggest a possible mechanism of the PVX virion structural rearrangement (remodeling) resulting from translational activation of virions by the TGB1 movement protein according to Atabekov and colleagues.  相似文献   

14.
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes (T2DM). In this study, we have evaluated the role of PTP1B in the development of aging-associated obesity, inflammation, and peripheral insulin resistance by assessing metabolic parameters at 3 and 16 months in PTP1B(-/-) mice maintained on mixed genetic background (C57Bl/6J × 129Sv/J). Whereas fat mass and adipocyte size were increased in wild-type control mice at 16 months, these parameters did not change with aging in PTP1B(-/-) mice. Increased levels of pro-inflammatory cytokines, crown-like structures, and hypoxia-inducible factor (HIF)-1α were observed only in adipose tissue from 16-month-old wild-type mice. Similarly, islet hyperplasia and hyperinsulinemia were observed in wild-type mice with aging-associated obesity, but not in PTP1B(-/-) animals. Leanness in 16-month-old PTP1B(-/-) mice was associated with increased energy expenditure. Whole-body insulin sensitivity decreased in 16-month-old control mice; however, studies with the hyperinsulinemic-euglycemic clamp revealed that PTP1B deficiency prevented this obesity-related decreased peripheral insulin sensitivity. At a molecular level, PTP1B expression and enzymatic activity were up-regulated in liver and muscle of 16-month-old wild-type mice as were the activation of stress kinases and the expression of p53. Conversely, insulin receptor-mediated Akt/Foxo1 signaling was attenuated in these aged control mice. Collectively, these data implicate PTP1B in the development of inflammation and insulin resistance associated with obesity during aging and suggest that inhibition of this phosphatase by therapeutic strategies might protect against age-dependent T2DM.  相似文献   

15.
Ruthenium red increased specific insulin binding to isolated adipocytes 5.4 fold and 2.6 fold over binding determined in the absence and presence of Ca2+ and Mg2+. The increase in insulin binding was not accompanied by an increase in insulin sensitivity. The lack of effect of ruthenium red on insulin action argued strongly against an increase in intracellular Ca2+ as a potential messenger/transducer of insulin action and suggested that the enhancing effect of Ca2+ on insulin action was a result of increased receptor affinity.Abbreviations RR ruthenium red - BSA bovine serum albumin - Hepes 4-(2-hydroxyethyl-1-piperazineethane-sulphonic acid  相似文献   

16.
A unique family of proteins have been identified in the Deinococcus genus with an N-terminal cobalamin (vitamin B(12)) chelatase domain denoted CbiX and an additional unique C-terminal domain with unknown function. Here we report the first crystal structure from this new family of proteins with the structure of Deinococcus radiodurans protein DR2241. The structure reveals a multi-domain protein where domains A (residues 1-132) has the same fold as the small CbiX (CbiX(S)), domains A and B (residues 1-272) follow the chelatase super-family fold and the two additional unique domains C and D have no structural homologues. Domain D harbours the sequence motifs CxxC and CxxxC, in which DR2241 gives the first evidence that these motifs bind a [4Fe-4S] iron-sulphur cluster. In solution there are indications of multimeric forms, and in the crystallographic asymmetric unit a tetramer is found where domains C and D are involved in stabilising the tetrameric assembly.  相似文献   

17.
Insulin inhibits hepatic very low density lipoprotein (VLDL) apo B secretion in rats. Current studies test whether the insulin effect is LDL receptor-mediated by examining the effect of insulin on VLDL apo B secretion in hepatocytes derived from Ldlr-/- and control mice. Primary hepatocytes were incubated overnight with media containing 14C-leucine and either 0.1nM (basal) or 200nM insulin. Afterwards, secreted VLDL B100 and B48 were quantitated. Insulin reduced 14C-labeled B100 and B48 comparably in control and Ldlr-/- hepatocytes with a 62+/-12% vs. 59+/-12% decrease in B100, and a 56+/-11% vs. 61+/-9% decrease in B48. Results indicate: (1) mouse hepatocytes respond to insulin by reducing VLDL apo B output; (2) both VLDL B100 and B48 secretion are suppressed; and (3) insulin inhibition of VLDL apo B secretion is retained in Ldlr-/- hepatocytes.  相似文献   

18.
Insulin is one of the most important hormonal regulators of metabolism. Since the diabetes patients increase dramatically, the chemical properties, biological and physiological effects of insulin had been extensively studied. In last decade the development of NMR technique allowed us to determine the solution structures of insulin and its variety mutants in various conditions, so that the knowledge of folding, binding and stability of insulin in solution have been largely increased. The solution structure of insulin monomers is essentially identical to those of insulin monomers within the dimer and bexamer as determined by X-ray diffraction. The studies of insulin mutants at the putative residues for receptor binding explored the possible conformational change and fitting between insulin and its receptor. The systematical studies of disulfide paring coupled insulin folding intermediates revealed that in spite of the conformational variety of the intermediates, one structural feature is always remained: a “native-like B chain super-secondary structure“, which consists of B9-B19 helix with adjoining B23-B26 segment folded back against the central segment of B chain, an internal cystine A20-B19 disulfide bridge and a short a-helix at C-terminal of A chain linked. The “super-secondary structure“ might be the “folding nucleus“ in insulin folding mechanism. Cystine A20-B19 is the most important one among three disulfides to stabilize the nascent polypeptide in early stage of the folding. The NMR structure of C. elegans insulin-like peptide resembles that of human insulin and the peptide interacts with human insulin receptor. Other members of insulin superfamily adopt the “insulin fold“ mostly. The structural study of insulin-insulin receptor complex, that of C elegans and other invertebrate insulin-like peptide, insulin fibril study and protein disulfide isomerase (PDI) assistant proinsulin folding study will be new topics in future to get insight into folding, binding, stability, evolution and fibrillation of insulin in detail.  相似文献   

19.
ABSTRACT: BACKGROUND: Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. Protein phosphatase 1 regulatory subunit 12B (PPP1R12B), one of the regulatory subunits of PP1, can bind to PP1cdelta, one of the catalytic subunits of PP1, and modulate the specificity and activity of PP1cdelta against its substrates. Phosphorylation of PPP1R12B on threonine 646 by Rho kinase inhibits the activity of the PP1c-PPP1R12B complex. However, it is not currently known whether PPP1R12B phosphorylation at threonine 646 and other sites is regulated by insulin. We set out to identify phosphorylation sites in PPP1R12B and to quantify the effect of insulin on PPP1R12B phosphorylation by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. RESULTS: 14 PPP1R12B phosphorylation sites were identified, 7 of which were previously unreported. Potential kinases were predicted for these sites. Furthermore, relative quantification of PPP1R12B phosphorylation sites for basal and insulin-treated samples was obtained by using peak area-based label-free mass spectrometry of fragment ions. The results indicate that insulin stimulates the phosphorylation of PPP1R12B significantly at serine 29 (3.02 +/- 0.94 fold), serine 504 (11.67 +/- 3.33 fold), and serine 645/threonine 646 (2.34 +/- 0.58 fold). CONCLUSION: PPP1R12B was identified as a phosphatase subunit that undergoes insulin-stimulated phosphorylation, suggesting that PPP1R12B might play a role in insulin signaling. This study also identified novel targets for future investigation of the regulation of PPP1R12B not only in insulin signaling in cell models, animal models, and in humans, but also in other signaling pathways.  相似文献   

20.
为了探讨腺病毒 (adenovirus,Ad)E1B 5 5kD癌蛋白 (AdE1B 5 5kD)打破hDaxx和PML共定位细胞核的作用机制 ,本文利用体内外共免疫沉淀反应研究AdE1B 5 5kD与hDaxx的结合反应 ,并通过酵母双杂交体系测定两种蛋白质的相互作用及其作用的氨基酸残基序列。结果显示 :Ad2E1B 5 5kD通过C端 5 8个氨基酸 (aa)与hDaxx结合并发生相互作用。Ad12E1B 5 5kD与hDaxx结合需全序列aa及其构象。共免疫沉淀反应和Westernblot结果证实Ad2 / 5或Ad12E1B 5 5kD能在体内外与hDaxx直接结合  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号