首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute pancreatitis (AP) is an inflammatory process in which cytokines and chemokines are involved. After onset, extrapancreatic stimuli can induce the expression of cytokines in pancreatic acinar cells, thereby amplifying this inflammatory loop. To further determine the role and mechanism of irritating agents in the pathogenesis of AP, rat pancreatic tissues were stimulated with ascitic fluid (APa) and serum (APs) from rats with AP or with lipopolysaccharide (LPS). In addition, the alteration of heat shock protein 60 (HSP60) expression was evaluated. Rat pancreas was removed and meticulously snipped to fragments. The snips were cultured for up to 48 h. During this period, the tissue viability as well as amylase and TNF-α levels in the supernatant and the HSP60 expression in the pancreatic tissue before and after stimulation by APa, APs, and LPS were assayed time-dependently. At different time-points during the culture, the viability and the amylase activity in the pancreatic tissue remained largely stable. After stimulation with APa, APs, or LPS for 1 h, the pancreatic tissues showed some damage, and this was followed by a sharp decrease in the viability accompanied by increased levels of amylase and TNF-α in the culture medium 2 or 4 h after stimulation (p < 0.05). In contrast, both the HSP60 mRNA and protein levels had a relatively high expression in the freshly prepared tissue fragments (0 h). As the culturing period was extended, the expression of HSP60 mRNA decreased only slightly; at the same time, the HSP60 protein levels decreased over a prolonged culture time, significantly so from 12 through 48 h (p < 0.05). After stimulation with APs, APa, or LPS, both the expression of HSP60 mRNA and protein in the tissue fragments increased slightly at 1 h and decreased significantly thereafter at 2 and 4 h (p < 0.05). APa, APs, or LPS induce injuries on isolated pancreatic tissues, accompanied by an altered HSP60 expression pattern in a time-dependent manner.  相似文献   

2.
We measured the levels of malondialdehyde (MDA), protein carbonyls, glutathione S-transferase (GST) and reducte glutathione (GSH) in seminal plasma and spermatozoa from 95 subjects including 50 infertile patients to evaluate the association between oxidative stress and damage and the components of the anti-oxidant defenses in seminal plasma and spermatozoa of infertile subjects and concentrations of cadmium (Cd) and lead (Pb) in the blood and seminal plasma because of tobacco smoke exposure. The reactive oxygen species (ROS) in spermatozoa were also evaluated by luminol (5-amino-2,3-dihydro-1,4-phthalazinedione)-enhanced chemiluminescence assay. The sperm count, motility, and morphology in the smokers infertile group were found to be lower than those in the fertile male group and nonsmokers infertile group (p < 0.001). Concentrations of Cd, Pb, MDA, protein carbonyls, and ROS levels in the smokers infertile group were significantly higher than those in the fertile male and nonsmokers infertile male groups (p < 0.001). However, GSH levels and GST activities were decreased in the smokers infertile male group than those in the fertile male and nonsmokers infertile male groups (p < 0.001). The results indicate that smoking could affect semen quality and oxidative lipid and protein damage in human spermatozoa. From Pearson correlation analysis, positive correlations were demonstrated between the seminal plasma Cd and seminal plasma protein carbonyls and between seminal plasma Pb and spermatozoa ROS levels in smokers of the subfertile group, while there was a significant positive correlation between blood Cd and ROS levels in smokers of the fertile group. There was also a significant negative correlation of the Cd level of the blood and GSH levels of the sperm and seminal plasma. These findings suggest that cigarette smoking enhances the levels of Cd and Pb in seminal plasma and blood and the extent of oxidative damage associated with a decrease in components of the anti-oxidant defenses in the sperm of infertile males.  相似文献   

3.
Pancreatitis is a common and potentially lethal necro-inflammatory disease with both acute and chronic manifestations. Current evidence suggests that the accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic disease, which is associated with an increased risk of pancreatic cancer. While parathyroid hormone-related protein (PTHrP) exerts multiple effects in normal physiology and disease states, its function in pancreatitis has not been previously addressed. Here we show that PTHrP levels are transiently elevated in a mouse model of cerulein-induced AP. Treatment with alcohol, a risk factor for both AP and chronic pancreatitis (CP), also increases PTHrP levels. These effects of cerulein and ethanol are evident in isolated primary acinar and stellate cells, as well as in the immortalized acinar and stellate cell lines AR42J and irPSCc3, respectively. Ethanol sensitizes acinar and stellate cells to the PTHrP-modulating effects of cerulein. Treatment of acinar cells with PTHrP (1-36) increases expression of the inflammatory mediators interleukin-6 (IL-6) and intracellular adhesion protein (ICAM-1), suggesting a potential autocrine loop. PTHrP also increases apoptosis in AR42J cells. Stellate cells mediate the fibrogenic response associated with pancreatitis; PTHrP (1-36) increases procollagen I and fibronectin mRNA levels in both primary and immortalized stellate cells. The effects of cerulein and ethanol on levels of IL-6 and procollagen I are suppressed by the PTH1R antagonist, PTHrP (7-34). Together these studies identify PTHrP as a potential mediator of the inflammatory and fibrogenic responses associated with alcoholic pancreatitis.  相似文献   

4.
The objective of this study was to investigate the function of heat shock protein 60 (HSP60) on pancreatic tissues by applying HSP60 small interfering RNA (siRNA) to reduce HSP60 expression. Rat pancreas was isolated and pancreatic tissue snips were prepared, cultured, and stimulated with low and high concentrations of cerulein (10−11 and 10−5 mol/L) or lipopolysaccharide (LPS, 10 and 20 μg/mL). Before the stimulation and 1 and 4 h after the stimulation, the viability and the level of trypsinogen activation peptide (TAP) in the tissue fragments were determined and the levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) in the culture supernatants were measured. Real-time PCR and Western blotting were used to evaluate the HSP60 mRNA and protein expression. After the administration of siRNA to inhibit HSP60 expression in the isolated tissues, these injury parameters were measured and compared. The pancreatic tissues in the control (mock-interfering) group showed a decreased viability to varying degrees after being stimulated with cerulein or LPS, and the levels of TAP, TNF-α, and IL-6 increased significantly (p < 0.05) in the tissues and/or in the culture supernatant. The expressions of HSP60 mRNA and protein were raised moderately after stimulating 1 h with low concentrations of cerulein or LPS, but decreased with high concentrations of the toxicants. In particular, the expression of HSP60 protein was reduced significantly (p < 0.05) when the tissues were stimulated by the two toxicants for 4 h. In contrast, the tissue fragments in which HSP60 siRNA was applied showed much lower tissue viability (p < 0.01) and higher levels of TNF-a, IL-6, and TAP (p < 0.01) in the tissues or culture supernatant after stimulating with the toxicants at the same dose and for the same time duration as compared with those of the control groups (p < 0.05). The results indicated that both cerulein and LPS can induce injuries on isolated pancreatic tissues, but the induction effects are dependent on the duration of the stimulation and on the concentrations of the toxicants. HSP60 siRNA reduces HSP60 expression and worsens the cerulein- or LPS-induced injuries on isolated pancreatic tissues, suggesting that HSP60 has a protective effect on pancreatic tissues against these toxicants.  相似文献   

5.
An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis.  相似文献   

6.
Li XL  Li K  Li YY  Feng Y  Gong Q  Li YN  Li XJ  Chen CJ 《Cell stress & chaperones》2009,14(2):199-206
The expression of heat-shock protein 60 (also known as chaperonin 60, Cpn60) in experimental acute pancreatitis (AP) is considered to play an active role in the prevention of abnormal enzyme accumulation and activation in pancreatic acinar cells. However, there are controversial results in the literature regarding the relationship between the abnormality of Cpn60 expression and AP onset and development. The purpose of this study was to investigate the alternations of Cpn60 expression and the relationship between the abnormal expression of Cpn60 and AP progression in rat severe acute pancreatitis (SAP) models. In this report, we induced SAP in Sprague–Dawley (SD) rats by reverse injection of sodium deoxycholate into the pancreatic duct, and examined the dynamic changes of Cpn60 expression in pancreatic tissues from different time points and at different levels with techniques of real-time PCR, western blotting, and immunohistochemistry. At 1 h after SAP induction, the expression of Cpn60 mRNA in the AP pancreatic tissues was higher than those in the sham-operation group and normal control group, but decreased sharply as the time period was extended, and there was a significant difference between 1 h and 10 h after SAP induction (p < 0.05). In the AP process, Cpn60 protein expression showed transient elevation as well, and the increased protein expression occurred predominantly in affected, but not totally destroyed, pancreatic acinar cells. As AP progressed, the pancreatic tissues were seriously damaged, leading to a decreased overall Cpn60 protein expression. Our results show a complex pattern of Cpn60 expression in pancreatic tissues of SAP rats, and the causality between the damage of pancreatic tissues and the decrease of Cpn60 level needs to be investigated further. Xue-Li Li and Kun Li contributed equally to this work.  相似文献   

7.
The proteins expressed in pancreatic acinar cells during the initiation of acute pancreatitis may determine the severity of the disease. Cerulein pancreatitis is one of the best characterized models for acute pancreatitis. Present study aims to determine the differentially expressed proteins in cerulein-stimulated pancreatic acinar cells as an in vitro model for acute pancreatitis. Rat pancreatic acinar AR42J cells were treated with 10(-8)M cerulein for 12h. The protein patterns separated by two-dimensional electrophoresis using pH gradients of 5-8 were compared between the cells treated without cerulein and those with cerulein. The changed proteins were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. As a result, 10 proteins (Orp150 protein, protein disulfide isomerase related protein, dnaK-type molecular chaperone hsp72-ps1, mitochondrial glutamate dehydrogenase, similar to chaperonin containing TCP-1 beta subunit, RuvB-like protein 1, heterogeneous nuclear ribonucleoprotein H1, aldehyde reductase 1, triosephosphate isomerase 1, peroxiredoxin 2) were up-regulated while four proteins (vasolin-containing protein, 78 kDa glucose-regulated protein precursor, heat shock protein 8, adenosylhomocysteinase) were down-regulated by cerulein in pancreatic acinar AR42J cells. These proteins are related to chaperone, cell defense mechanism against oxidative stress or DNA damage, anti-apoptosis and energy generation. The differentially expressed proteins by ceruein share their functional roles in pancreatic acinar cells, suggesting the possible involvement of oxidative stress, DNA damage, and anti-apoptosis in pathogenesis of acute pancreatitis. Proteins involved in cellular defense mechanism and energy production may protect pancreatic acinar cells during the development of pancreatitis.  相似文献   

8.
9.
Increased lipid peroxidation, enhanced nuclear factor kappa-B (NF- &#115 B) activation and augmented tumor necrosis factor- &#102 (TNF- &#102 ) production have been implicated in cerulein-induced pancreatitis. We investigated whether lipid peroxidation inhibition might reduce NF- &#115 B activation and the inflammatory response in cerulein-induced pancreatitis. Male Sprague-Dawley rats of 230-250 g body weight received administration of cerulein (80 &#119 g/kg s.c. for each of four injections at hourly intervals). A control group received four s.c. injections of 0.9% saline at hourly intervals. Animals were randomized to receive either raxofelast, an inhibitor of lipid peroxidation (20 mg/kg i.p. administered with the first cerulein injection) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). All these rats were sacrificed 2 h after the last injection of either cerulein or its vehicle. Raxofelast administration (20 mg/kg i.p. with the first cerulein) significantly reduced malondialdehyde (MDA) levels, an index of lipid peroxidation (CER+DMSO=3.075 &#45 0.54 &#119 mol/g; CER+raxofelast= 0.693 &#45 0.18 &#119 mol/g; p <0.001 ), decreased myeloperoxidase (MPO) activity ( CER+DMSO=22.2 &#45 3.54 mU/g; CER+raxofelast=9.07 &#45 2.05 mU/g; p <0.01 ), increased glutathione levels (GSH) (CER+DMSO= 5.21 &#45 1.79 &#119 mol/g; CER+raxofelast=15.71 &#45 2.14 &#119 mol/g; p <0.001 ), and reduced acinar cell damage evaluated by means of histology and serum levels of both amylase ( CER+DMSO=4063 &#45 707.9 U/l; CER+raxofelast=1198 &#45 214.4 U/l; p <0.001 ), and lipase (CER+DMSO=1654 &#45 330 U/l; CER+raxofelast= 386 &#45 118.2 U/l; p <0.001 ), Furthermore, raxofelast reduced pancreatic NF- &#115 B activation and the TNF- &#102 mRNA levels and tissue content of mature protein in the pancreas. Indeed, lipid peroxidation inhibition might be considered a potential therapeutic approach to prevent the severe damage in acute pancreatitis.  相似文献   

10.
The present study was to investigate the efficiency of maternal selenomethionine intake on growth performance, Se distribution, and antioxidant status of pig offspring by comparing with sodium selenite. A total of 12 sows (Landrace × Yorkshire) with same pregnancy were randomly divided into two groups; each group was replicated six times. These two groups received the same basal gestation and lactation diets containing 0.04 mg Se/kg, supplemented with 0.3 mg Se/kg sodium selenite and selenomethionine (i.e., seneno-dl-methylseleno), respectively. The feeding trial lasted for 60 days, with 32 and 28 days for gestation and lactation period, respectively. Compared with sodium selenite, maternal selenomethionine intake significantly (p < 0.05) increased the daily weight gain of piglet from birth to weaning. The Se concentration in the colostrum and milk and tissue Se content of piglets were significantly higher (p < 0.05) in the selenomethionine-treated group. The antioxidant status was greatly improved in piglets of selenomethionine-treated group and was illuminated by the increased total antioxidant capability, glutathione peroxidase, superoxide dismutase, and glutathione, and decreased the malondialdehyde level in the organs of piglets. The increased (p < 0.05) triiodothyronine (T3) and decreased (p < 0.05) thyroxine (T4) concentration indicated the improved protein synthesis and energy production in the selenomethionine-treated group. The increased (p < 0.05) pancreatic digestive enzymes of protease, amylase, and lipase activities indicated that maternal selenomethionine intake may have a positive effect on the degradation and absorption of nutrients in its piglets. In summary, we concluded that maternal selenomethionine intake increased Se deposition, antioxidant status, and nutrient use efficiency, thus providing an effective way to improve the growth performance of piglets from birth to weaning.  相似文献   

11.
Excessive alcohol consumption is associated with most cases of chronic pancreatitis, a progressive necrotizing inflammatory disease that can result in pancreatic insufficiency due to acinar atrophy and fibrosis and an increased risk of pancreatic cancer. At a cellular level acute alcohol exposure can sensitize pancreatic acinar cells to secretagogue stimulation, resulting in dysregulation of intracellular Ca2+ homeostasis and premature digestive enzyme activation; however, the molecular mechanisms by which ethanol exerts these toxic effects have remained undefined. In this study we identify Raf-1 kinase inhibitory protein as an essential mediator of ethanol-induced sensitization of cholecystokinin- and carbachol-regulated Ca2+ signaling in pancreatic acinar cells. We show that exposure of rodent acinar cells to ethanol induces protein kinase C-dependent Raf-1 kinase inhibitory protein phosphorylation, sensitization of cholecystokinin-stimulated Ca2+ signaling, and potentiation of both basal and cholecystokinin-stimulated extracellular signal-regulated kinase activation. Furthermore, we show that either suppression of Raf-1 kinase inhibitory protein expression using short hairpin RNA or gene ablation prevented the sensitizing effects of ethanol on cholecystokinin- and carbachol-stimulated Ca2+ signaling and intracellular chymotrypsin activation in pancreatic acinar cells, suggesting that the modulation of Raf-1 inhibitory protein expression may have future therapeutic utility in the prevention or treatment of alcohol-associated pancreatitis.  相似文献   

12.
In preceding papers we demonstrated an inhibitory effect of wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA) on the cholecystokinin (CCK) binding to the CCK receptor of rat pancreatic cells and also on the CCK induced Ca2+ release and alpha-amylase secretion in vitro as well as on pancreatic secretion of intact rats in vivo. In the present study we show the same inhibitory effect of both lectins on the cerulein pancreatitis of rats. This acute pancreatitis was induced by supramaximal injections (5 microg/kg/h i.v. or 10 microg/kg/h i.p.) of the CCK analogue cerulein in rats every hour. To monitor the degree of pancreatitis, we measured the number and diameter of injury vacuoles in the pancreatic acinar cells as one of the most important signs of this type of pancreatitis by light microscopic morphometry with two different systems on paraffin sections. Furthermore, the serum alpha-amylase activity was measured biochemically. We found a correlation between the diameter of vacuoles inside the acinar cells and the serum enzyme activity up to 24 h. The simultaneous i.p. administration of cerulein and WGA or UEA in a dosage of 125 microg/kg/h for 8 h led to a reduction of vacuolar diameter from 13.1+/-2.0 microm (cerulein) to 7.5+/-1.1 microm (cerulein + WGA) or 7.2+/-1.3 microm (cerulein + UEA). The serum amylase activity was reduced from 63.7+/-15.8 mmol/l x min (cerulein) to 37.7+/-11.8 (cerulein + WGA) or 39.4; +52.9; -31.1 (cerulein + UEA-I). Both parameters allow the grading this special type of pancreatitis to demonstrate the protective effect of the lectins.  相似文献   

13.
14.
 In order to investigate the cellular mechanisms involved in amylase release in response to stimulation with short-chain fatty acids, changes in intracellular calcium concentration ([Ca2+]i), membrane current and amylase release were measured in pancreatic acinar cells of sheep. Both octanoate and acetylcholine raised [Ca2+]i in acinar cells in a concentration-dependent manner. The rise in [Ca2+]i in response to the stimulation with octanoate (10 mmol ⋅ l-1) was reduced in a medium without CaCl2, but was markedly enhanced by reintroduction of CaCl2 into the medium up to 2.56 mmol ⋅ l-1. Perfusion of the cells with a medium containing octanoate (5 mmol ⋅ l-1) or acetylcholine (0.5 μmol ⋅ l-1) immediately raised inward current across the cell membrane at a holding-membrane potential of −30 mV. The inward current became greater as the holding potential became more negative. The equilibrium potential was 1.8 mV and 3.9 mV for octanoate and acetylcholine, respectively, being consistent with that for Cl-. Although intracellular application of octanoate through a patch-clamp pipette also raised inward current after several minutes in some cells (4 out of 12), this possibility was significantly smaller than that for extracellular application. In other cells, even though the intracellular application of octanoate did not cause an increase in current, it always caused responses immediately after introduction of the fatty acid into the medium. Stimulation with fatty acid as well as acetylcholine raised amylase release in a concentration-dependent manner in cells dispersed from tissue segments with crude collagenase and trypsin inhibitor. Without trypsin inhibitor, crude collagenase significantly and selectively reduced the octanoate (10 mmol ⋅ l-1)-induced amylase release. Dispersion with crude collagenase and trypsin significantly reduced both responses induced by octanoate and acetylcholine (5.5 μmol ⋅ l-1). We conclude that fatty acids and acetylcholine increase [Ca2+]i, which consequently evokes a rise in transmembrane ion (Cl-) conductance and amylase release, and that trypsin-sensitive protein(s) in the cell membrane are involved in secretory processes activated by stimulation with fatty acids in ovine pancreatic acinar cells. Accepted: 14 May 1996  相似文献   

15.
Since genetic damage induced by ethanol exposure is controversial and incomplete and because germ and somatic cells constitute bioindicators for monitoring reproductive toxicity and genotoxic actions of ethanol consumption, the purpose of the present investigation was to evaluate morphological sperm, oocyte alterations and parental genotoxic effects after sub-chronic ethanol intake in the CF-1 outbred mouse strain. Ethanol 10% was administered to CF-1 adult male (treated males, TM) and female (treated females, TF) mice for 27 days, whereas water was given to controls from both sexes too (CM and CF). Post-treatment micronucleus frequency (MN-PCE/1,000/mouse) and gamete morphology were evaluated. To test whether change of female reproductive status results in maternal genotoxicity, CF-1 females received ethanol 10% (exposed group, periconceptionally treated females (PTF)) or water (control group, pregnant control females (PCF)) in drinking water for 17 days previous and up to 10 days of gestation. TM had a high percentage of abnormal spermatozoa vs CM (p < 0.001) and elevated parthenogenetic activated oocyte frequency appeared in TF vs CF (p < 0.001). Sub-chronic ethanol ingestion induced increased MN frequency in TM and TF (p < 0.01). In PTF, where blood alcohol concentrations were between 19–28 mg/dl, very significantly increased MN frequency was found vs PCF (p < 0.01), whereas MN values were similar to TF. These results show that sub-chronic alcohol ingestion in CF-1 mice produces sperm head dysmorphogenesis and oocyte nuclear anomalies, suggesting that morphological abnormalities in germ cells are probably related to parental genotoxicity after ethanol consumption.  相似文献   

16.
Acute pancreatitis (AP) is an inflammatory disease involving acinar cell injury and rapid production and release of inflammatory cytokines, which play a dominant role in local pancreatic inflammation and systemic complications. 2',4',6'-Tris (methoxymethoxy) chalcone (TMMC), a synthetic chalcone derivative, displays potent anti-inflammatory effects. Therefore, we aimed to investigate whether TMMC might affect the severity of AP and pancreatitis-associated lung injury in mice. We used the cerulein hyperstimulation model of AP. Severity of pancreatitis was determined in cerulein-injected mice by histological analysis and neutrophil sequestration. The pretreatment of mice with TMMC reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (activity of amylase, lipase, trypsin, trypsinogen, and myeloperoxidase and production of proinflammatory cytokines). In addition, TMMC inhibited pancreatic acinar cell death and production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 by inhibiting NF-κB and extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation. Neutralizing antibodies for TNF-α, IL-1β, and IL-6 inhibited cerulein-induced cell death in isolated pancreatic acinar cells. Moreover, pharmacological blockade of NF-κB/ERK1/2 reduced acinar cell death and production of TNF-α, IL-1β, and IL-6 in isolated pancreatic acinar cells. In addition, posttreatment of mice with TMMC showed reduced severity of AP and lung injury. Our results suggest that TMMC may reduce the complications associated with pancreatitis.  相似文献   

17.
Acute exposure to hexavalent chromium [Cr(VI)] compounds can cause hepatotoxicity. Reactive intermediates and free radicals generated during reduction process may be responsible for Cr(VI) toxicity. In this study, the effects of pretreatment or posttreatment of taurine on Cr(VI)-induced oxidative stress and chromium accumulation in liver tissue of Swiss Albino mice were investigated. Single intraperitoneal (ip) potassium dichromate treatment (20 mgCr/kg), as Cr(VI) compound, significantly elevated the level of lipid peroxidation as compared with control group (p < 0.05). This was accompanied by significant decreases in nonprotein sulfhydryls (NPSHs) level, superoxide dismutase (SOD), and catalase (CAT) enzyme activities as well as a significant chromium accumulation in the tissue (p < 0.05). Taurine administration (1 g/kg, ip) before or after Cr(VI) exposure resulted in reduction of lipid peroxidation (p < 0.05) showed rebalancing effect on tissue NPSH levels either in pretreatment or in posttreatment (p < 0.05). Enzyme activities of SOD and CAT were restored by taurine pretreatment (p < 0.05), whereas posttreatment had less pronounced effects on these parameters. On the other hand, taurine treatment, before or after exposure, could exert only slight decreases in tissue Cr levels (p > 0.05). In view of the results, taurine seems to exert some beneficial effects against Cr(VI)-induced oxidative stress in liver tissue.  相似文献   

18.
Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress, inflammation, and acinar cell injury during the early phase of AP. Fifty-three male Sprague-Dawley rats were randomly allocated into groups: 1) control, 2) sham procedure, 3) AP with no treatment, 4) AP with probiotics, and 5) AP with placebo. AP was induced under general anesthesia by intraductal glycodeoxycholate infusion (15 mM) and intravenous cerulein (5 microg.kg(-1).h(-1), for 6 h). Daily probiotics or placebo were administered intragastrically, starting 5 days prior to AP. After cerulein infusion, pancreas samples were collected for analysis including lipid peroxidation, glutathione, glutamate-cysteine-ligase activity, histological grading of pancreatic injury, and NF-kappaB activation. The severity of pancreatic injury correlated to oxidative damage (r = 0.9) and was ameliorated by probiotics (1.5 vs. placebo 5.5; P = 0.014). AP-induced NF-kappaB activation was reduced by probiotics (0.20 vs. placebo 0.53 OD(450nm)/mg nuclear protein; P < 0.001). Probiotics attenuated AP-induced lipid peroxidation (0.25 vs. placebo 0.51 pmol malondialdehyde/mg protein; P < 0.001). Not only was AP-induced glutathione depletion prevented (8.81 vs. placebo 4.1 micromol/mg protein, P < 0.001), probiotic pretreatment even increased glutathione compared with sham rats (8.81 vs. sham 6.18 miccromol/mg protein, P < 0.001). Biosynthesis of glutathione (glutamate-cysteine-ligase activity) was enhanced in probiotic-pretreated animals. Probiotics enhanced the biosynthesis of glutathione, which may have reduced activation of inflammation and acinar cell injury and ameliorated experimental AP, via a reduction in oxidative stress.  相似文献   

19.
Yu JH  Yun SY  Lim JW  Kim H  Kim KH 《Proteomics》2003,3(12):2446-2453
Cerulein pancreatitis was shown to be one of the best characterized models for acute pancreatitis. High doses of cerulein induce a dysregulation of the digestive enzyme production and cytoplasmic vacuolization and the death of acinar cells, edema formation, and an infiltration of inflammatory cells into the pancreas, which are similar symptoms shown in human acute pancreatitis. The present study aims to determine the differentially expressed proteins in cerulein-treated pancreatic acinar cells as an in vitro model for acute pancreatitis. Pancreatic acinar AR42J cells were treated with 10(-8) M cerulein for 24 h. The changed protein patterns separated by two-dimensional electrophoresis using pH gradients of 5-8 were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis of the peptide digests. Five differentially expressed proteins (heat shock protein 90, mitochondrial ATP synthase beta chain precursor, tubulin beta chain, 3-mercaptopyruvate sulfurtransferase, mitochondrial ATP synthase subunit D) were identified in cerulein-treated AR42J cells. These proteins are related to cellular stress such as reactive oxygen species, cytoskeletal function, and cell signaling. In conclusion, the differentially expressed proteins will provide valuable information to understand the pathophysiologic mechanism of acute pancreatitis and may be useful for prognostic indices of acute pancreatitis.  相似文献   

20.
Although alcohol abuse is the major cause of chronic pancreatitis, the pathogenesis of alcoholic chronic pancreatitis (ACP) remains obscure. A critical obstacle to understanding the mechanism of ACP is lack of animal models. Our objective was to develop one such model. Rats were pair-fed for 8 wk ethanol or control Lieber-DeCarli liquid diet. For the last 2 wk, they received cyclosporin A (CsA; 20 mg/kg once daily) or vehicle. After 1 wk on CsA, one episode of acute pancreatitis was induced by four 20 microg/kg injections of cerulein (Cer); controls received saline. Pancreas was analyzed 1 wk after the acute pancreatitis. CsA or Cer treatments alone did not result in pancreatic injury in either control (C)- or ethanol (E)-fed rats. We found, however, that alcohol dramatically aggravated pathological effect of the combined CsA+Cer treatment on pancreas, resulting in massive loss of acinar cells, persistent inflammatory infiltration, and fibrosis. Macrophages were prominent in the inflammatory infiltrate. Compared with control-fed C+CsA+Cer rats, their ethanol-fed E+CsA+Cer counterparts showed marked increases in pancreatic NF-kappaB activation and cytokine/chemokine mRNA expression, collagen and fibronectin, the expression and activities of matrix metalloproteinase-2 and -9, and activation of pancreatic stellate cells. Thus we have developed a model of alcohol-mediated postacute pancreatitis that reproduces three key responses of human ACP: loss of parenchyma, sustained inflammation, and fibrosis. The results indicate that alcohol impairs recovery from acute pancreatitis, suggesting a mechanism by which alcohol sensitizes pancreas to chronic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号