首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of glucose 1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, changed in rat skin during growth: Glc-1,6-P2 increased during the first week of age, and thereafter was dramatically reduced during maturation. The activity of glucose 1,6-bisphosphatase, the enzyme that degradates Glc-1,6-P2, changed with age in an invert manner as compared to the changes in Glc-1,6-P2. These findings suggest that the age dependent changes in this enzyme's activity may account for the changes in intracellular Glc-1,6-P2 concentration. The age-related changes in Glc-1,6-P2 were accompanied by concomitant changes in the activities of particulate (mitochondrial) hexokinase and 6-phosphogluconate dehydrogenase, the two enzymes known to be inhibited by Glc-1,6-P2. The activities of both these enzymes in the soluble fraction were not changed with age. The particulate enzymes were more susceptible to inhibition by Glc-1,6-P2 than the soluble activities, which may explain why only the particulate, but not the soluble activities, correlated with the age-dependent changes in tissue Glc-1,6-P2. These results suggest that the changes in particulate hexokinase and 6-phosphogluconate dehydrogenase resulted from changes in intracellular concentration of Glc-1,6-P2. The marked reduction in Glc-1,6-P2 during maturation, accompanied by activation of mitochondrial hexokinase and 6-phosphogluconate dehydrogenase, may reflect an enhancement in skin metabolism during growth.  相似文献   

2.
Mitochondrial and soluble Type I and Type II hexokinase from various rat tissues differed in their susceptibility to inhibition by glucose-1,6-bisphosphate (Glc-1,6-P2). In tissues where Type I is the predominant form, the mitochondrial enzyme was less susceptible to inhibition by Glc-1,6-P2 than the soluble enzyme, especially at high Mg2+ concentration. In tissues where Type II is the predominant form, the mitochondrial enzyme was more susceptible to inhibition by Glc-1,6-P2 than the soluble enzyme, especially at low Mg2+ concentration. The results suggest that changes in the intracellular concentrations of Glc-1,6-P2 and Mg2+ under various conditions would affect the activity of the bound and soluble hexokinase from different tissues in a different manner.  相似文献   

3.
The intracellular concentration of glucose-1,6-bisphosphate (Glc-1,6-P2) in rat tibialis anterior muscle was markedly decreased following the injection of bradykinin. Injection of bradykinin also induced a significant increase in the level of cyclic GMP in muscle. The activity of glucose-1,6-bisphosphatase, the enzyme that degrades Glc-1,6-P2, was markedly enhanced by bradykinin, which may account for the decrease in the level of Glc-1,6-P2. The decrease in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, was accompanied by a concomitant reduction in these enzymes' activities. The bradykinin-induced decrease in Glc-1,6-P2 and in the activity of phosphofructokinase, the rate-limiting enzyme in glycolysis, may be involved in the pathogenic influences of this hormone in various clinical conditions.  相似文献   

4.
Four kinds of the enzyme reactions have been reported for the synthesis of Glc-1,6-P2. However, any activity of Glc-1-P dismutase and phosphoglucokinase was not observed in the beef liver homogenate. When the liver homogenate was incubated with Glc-1-P and Fru-1,6-P2, a significant amount of Glc-1,6-P2 was formed. The Glc-1,6-P2 synthesis activity from Glc-1-P and Fru-1,6-P2 was caused by the action of phosphoglucomutase present in the liver homogenate. The most remarkable activity for Glc-1,6-P2 synthesis was observed when the homogenate was incubated with Glc-1-P and glycerate-1,3-P2. The Glc-1,6-P2 synthesis activity from Glc-1-P and glycerate-1,3-P2 was separated from the major peak of phosphoglucomutase activity by DEAE-Sephadex chromatography. The peak of Glc-1,6-P2 synthesis activity, however, still retained phosphoglucomutase activity.

Glc-1,6-P2 phosphatase activity was mainly observed in the mitochondria and microsome fraction. The properties of Glc-1,6-P2 phosphatase were differentiated from those of acid phosphatase and Glc-6-P phosphatase.  相似文献   

5.
Injection of trifluoperazine (TFP) to rats induced a significant rise in the level of glucose 1,6-bisphosphate (Glc-1,6-P2) in muscle. This increase in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, was accompanied by a marked activation of both enzymes, when assayed in the absence of exogenous Glc-1,6-P2 under conditions in which these enzymes are sensitive to regulation by endogenous Glc-1,6-P2. Glucose-1,6-bisphosphatase (the enzyme that degrades Glc-1,6-P2) was markedly inhibited following the injection of TFP, which may account for the rise in the Glc-1,6-P2 level. Previous results from this laboratory have revealed that muscle damage or weakness is characterized by a decrease in Glc-1,6-P2 levels, leading to a marked reduction in the activities of phosphoglucomutase and phosphofructokinase (the rate-limiting enzyme in glycolysis). The present results suggest that TFP treatment may have a beneficial effect on the depressed glycolysis in muscle weakness or damage.  相似文献   

6.
1. The level of glucose-1,6-diphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, was found to be strikingly decreased in brains of adult rats (5 months of age) as compared to young (10-14 days of age). 2. This age-related decrease in Glc-1,6-P2, the potent inhibitor of hexokinase and activator of phosphoglucomutase, was accompanied by a correlated increase in the activity of hexokinase and a reduction in phosphoglucomutase. 3. Evidence is provided showing that Glc-1,6-P2 participates in the regulation of these enzymes' activities with age. 4. The age-related changes in Glc-1,6-P2 and in the enzymes' activities in brain were opposite to those which we previously found in skeletal muscle. 5. These results suggest that Glc-1,6-P2 is involved in the regulation of carbohydrate metabolism during growth in both brain and muscle, as well as in the interrelationship between these two tissues.  相似文献   

7.
Injection of trifluoperazine abolished the bradykinin-induced decrease in intracellular concentration of glucose 1,6-bisphosphate (Glc-1,6-P2) in rat tibialis anterior muscle and skin. These changes in Glc-1,6-P2 levels may be attributed to the changes in the activity of glucose 1,6-bisphosphatase (the enzyme that degrades Glc-1,6-P2), which was markedly enhanced by bradykinin and reversed by trifluoperazine. Concomitantly to the changes in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, the activities of these enzymes were reduced by bradykinin and restored by trifluoperazine. These findings suggest that trifluoperazine treatment may have a beneficial effect on the depressed glycolysis induced by bradykinin in tissue damage.  相似文献   

8.
Nucleoside 5'-triphosphates, 5'-diphosphates and 5'-monophosphates are inhibitors of the 6-phosphogluconate dehydrogenase enzyme from bass liver. The 2'- and 3'-monophosphates of adenosine and guanosine are also inhibitory, the 2'-isomers being especially potent inhibitors. The catalytic activity of 6-phosphogluconate dehydrogenase has been found to be markedly inhibited by fructose 1, 6 bisphosphate. As the Km for 6-phosphogluconate, the Ki for fructose 1,6 bisphosphate and the concentration of both compounds in bass liver are all comparable, it appears that the inhibition of 6-phosphogluconate dehydrogenase by fructose 1,6 bisphosphate may be of significance in the regulation of carbohydrate metabolism in bass liver.  相似文献   

9.
1. Solubilization of mitochondrial bound hexokinase (HK), which represents 75-80% of the total enzyme activity in the cells, was investigated in freshly isolated mitochondria from undifferentiated (Glc+) or differentiated (Glc-) HT29 adenocarcinoma cells. In both models, the bound HK is almost completely released in vitro by 100 microM glucose 6-P (G 6-P). 2. Free ATP (5 mM) or palmitate (800 microM) produce a partial solubilization of bound HK, more markedly in the case of Glc- mitochondria. 3. Glucose or glucose 1-P are found unable to solubilize bound HK. Glucose 1,6-P2, 2-deoxyglucose 6-P or glucosamine 6-P can solubilize the enzyme but are less efficient than G 6-P. 4. Mg2+ and Pi are found to counteract the glucose 6-P induced solubilization of HK in both types of mitochondria. Taking into account the intracellular concentrations of these ions, this could in part explain why, in HT29 cells, HK is predominantly bound to the mitochondria.  相似文献   

10.
M L Sagrista  J Bozal 《Biochimie》1987,69(3):205-214
Chicken liver crude mitochondrial fraction showed lactate dehydrogenase activity (6.5% of cytoplasmic enzyme). Most of the mitochondrial lactate dehydrogenase was solubilized by sonication of the mitochondrial fraction in 0.15 M NaCl, pH 6. Total extracted lactate deshydrogenase activity was 3-fold higher than the initial pellet activity. Different isoenzymatic compositions were observed for cytosoluble and mitochondrial extracted lactate dehydrogenase. The pI, values of the 5 lactate dehydrogenase isoenzymes were found to be independent of their origin. The cytosoluble lactate dehydrogenase and the separated H4,H3M and H2M2 isoenzymes were able to bind to the chicken liver mitochondrial fraction in 5 mM sodium phosphate buffered medium, and could be solubilized afterwards with 0.15 M NaCl, pH 6. The enzyme bound to the mitochondrial fraction was less active than the soluble one. Particle saturation by the bound enzyme occurred with all mitochondrial fractions assayed. According to the Langmuir isotherm, the non-sonicated mitochondrial fractions contain a single type of binding sites for lactate dehydrogenase; in contrast, the sonicated mitochondrial fraction should contain different binding sites. Chicken liver crude or sonicated active mitochondrial fractions showed a hyperbolic behavior with respect to NADH and a non-hyperbolic one with respect to pyruvate. This mechanism is different from the bi-bi compulsory order mechanism of the soluble enzyme. With hydroxypyruvate as the substrate, the active mitochondrial fraction fit a sequential mechanism but lost the rapid-equilibrium characteristics of the soluble enzyme.  相似文献   

11.
Glucose 1,6-bisphosphate (Glc-1,6-P(2)) concentration in brain is much higher than what is required for the functioning of phosphoglucomutase, suggesting that this compound has a role other than as a cofactor of phosphomutases. In cell-free systems, Glc-1,6-P(2) is formed from 1,3-bisphosphoglycerate and Glc-6-P by two related enzymes: PGM2L1 (phosphoglucomutase 2-like 1) and, to a lesser extent, PGM2 (phosphoglucomutase 2). It is hydrolyzed by the IMP-stimulated brain Glc-1,6-bisphosphatase of still unknown identity. Our aim was to test whether Glc-1,6-bisphosphatase corresponds to the phosphomannomutase PMM1, an enzyme of mysterious physiological function sharing several properties with Glc-1,6-bisphosphatase. We show that IMP, but not other nucleotides, stimulated by >100-fold (K(a) approximately 20 mum) the intrinsic Glc-1,6-bisphosphatase activity of recombinant PMM1 while inhibiting its phosphoglucomutase activity. No such effects were observed with PMM2, an enzyme paralogous to PMM1 that physiologically acts as a phosphomannomutase in mammals. Transfection of HEK293T cells with PGM2L1, but not the related enzyme PGM2, caused an approximately 20-fold increase in the concentration of Glc-1,6-P(2). Transfection with PMM1 caused a profound decrease (>5-fold) in Glc-1,6-P(2) in cells that were or were not cotransfected with PGM2L1. Furthermore, the concentration of Glc-1,6-P(2) in wild-type mouse brain decreased with time after ischemia, whereas it did not change in PMM1-deficient mouse brain. Taken together, these data show that PMM1 corresponds to the IMP-stimulated Glc-1,6-bisphosphatase and that this enzyme is responsible for the degradation of Glc-1,6-P(2) in brain. In addition, the role of PGM2L1 as the enzyme responsible for the synthesis of the elevated concentrations of Glc-1,6-P(2) in brain is established.  相似文献   

12.
Injection of serotonin (5-hydroxytryptamine) induced a marked decrease in the level of glucose 1,6-diphosphate (Glc-1,6-P2) in the rat tibialis anterior muscle. Concomitant to the decrease in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, the activities of both these enzymes were markedly reduced by serotonin. The level of Glc-1,6-P2 and the activities of phosphofructokinase and phosphoglucomutase increased with age in the tibialis anterior muscle and the effect of serotonin was more pronounced in the older animals. Serotonin also induced a significant increase in the level of cyclic GMP in muscle. The serotonin-induced changes in the normal muscle mimic the changes in carbohydrate metabolism we found previously in muscular dystrophy.  相似文献   

13.
Liver phosphoglucomutase was found to catalyze also the reaction of Glc-1,6-P2 formation from Glc-1-P and Fru-1,6-Pz or Glc-1-P and glycerate-1,3-P2. The specific activity of Glc-1,6-P2 formation from Glc-1-P and Fru-1,6-P2 was 1/9200 of that of the mutase activity. The activity of Glc-1,6-P2 formation from Glc-1-P and glycerate-1,3-P2 was 1/122,000 of the mutase activity. From the results of the kinetics and the thermal inactivation experiments, the reaction of the mutase and Glc-1,6-P2 synthesis were strongly suggested to occur at the same active site of liver phosphoglucomutase.

Liver phosphoglucomutase exhibited the Glc-1,6-P2 phosphatase activity only in the presence of xylose 1-phosphate. The specific activity of phosphatase was only 1/154,000 of that of the mutase activity.  相似文献   

14.
ATP, added externally to the incubation medium of rat diaphragm muscles, abolished the decrease in the levels of glucose-1,6-bisphosphate (Glc-1,6-P2), the powerful regulator of carbohydrate metabolism, induced by phospholipase A2, local anesthetics, Ca2+ ionophore A23187, or lithium. Concomitantly to the changes in Glc-1,6-P2, the potent activator of phosphofructokinase (the rate-limiting enzyme in glycolysis) and phosphoglucomutase, the activities of these enzymes were reduced by the myotoxic agents and restored by exogenous ATP, when assayed under conditions in which these enzymes are sensitive to regulation by Glc-1,6-P2. These findings suggest that ATP may have broad therapeutic action, as it may stimulate the impaired glycolysis in muscle induced by various drugs and conditions which cause muscle weakness or damage.  相似文献   

15.
This study is an attempt to relate in vivo use of the 6-phosphogluconate dehydrogenase reaction in Escherichia coli with the characteristics of the enzyme determined in vitro. 1) The enzyme was obtained pure by affinity chromatography and kinetically characterized; as already known, ATP and fructose-1,6-P2 were inhibitors. 2) A series of isogenic strains were made in which in vivo use of thereaction might differ, e.g. a wild type strain versus a mutant lacking 6-phosphogluconate dehydrase, as grown on gluconate; a phosphoglucose isomerase mutant grown on glucose or glycerol. 3) The in vivo rate of use of the 6-phosphogluconate dehydrogenase reaction was determined from measurements of growth rate and yield and from the specific activity of alanine after growth in 1-14C-labeled substrates. 4) The intracellular concentrations of 6-phosphogluconate, NADP+, fructose-1,6-P2, and ATP were measured for the strains in growth on several carbon sources. 5) The metabolite concentrations were used for assay of the enzyme in vitro. The results allow one to calculate how fast the reaction would function in vivo if ATP and fructose-1,6-P2 were its important effectors and if the in vitro assay conditions apply in vivo. The predicted in vivo rates ranged down to as low as one-tenth of the actual rates, and, accordingly, one cannot yet draw firm conclusions about how the reaction is actually controlled in vivo.  相似文献   

16.
A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c3H/c6H mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in soluble malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19--21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.  相似文献   

17.
Kinetic studies of phosphoacetylglucosamine mutase (EC 2.7.5.2) for the following reactions: 1) Glc-1-P in equilibrium Glc-6-P and 2) GlcNAc-1-P in equilibrium GlcNAc-6-P have been conducted in the presence of Glc-1,6-P2 and GlcNAc-1,6-P2, respectively. In the first reaction, the initial velocity studies at various concentrations of one substrate showed a series of parallel lines in the Line-weaver-Burk plot when the concentrations of the other substrate were changed at several fixed levels. For both reactions, the initial velocity studies performed at fixed ratios of both substrates showed linear lines in the double reciprocal plot. The competitive substrate inhibition pattern was observed in the second reaction. A ping-pong mechanism is proposed for phosphoacetyl-glucosamine mutase. In addition, phosphoacetylglucosamine mutase can be phosphorylated by the addition of Glc-1-[32P]P probably via the reaction of Glc-1-[32P]P with the phosphoenzyme followed by the release of glucose-monophosphate leaving the 32P with the phosphoenzyme. The linkage between the phosphoryl residue and enzyme is stable in acid, but labile in alkali, suggesting phosphoserine (or phosphothreonine) as the phosphorylated amino acid. Biphasic heat denaturation curves suggest the existence of heat-stable and heat-labile forms of this enzyme.  相似文献   

18.
1. Injection of epinephrine induced in skin a decrease in the level of glucose-1,6-bisphosphate (Glc-1,6-P2), which was accompanied by correlated changes in the activities of several enzymes which are modulated by this regulator. 2. These effects were blocked by the alpha adrenergic blocker phentolamine, in contrast to muscle where the hormone increases Glc-1,6-P2, acting through beta receptors. 3. The changes in the enzymes' activities, as well as in glycogen and lactate content induced by epinephrine, reveal that the hormone causes, in skin, a stimulation of glycogenolysis and glycolysis, as well as an acceleration of pentose phosphate pathway. 4. The reduction in glycogen content induced by epinephrine, was blocked by the beta adrenergic blocker propranolol, whereas the hormone's effects on the other processes were mainly mediated through alpha receptors.  相似文献   

19.
Dehydroepiandrosterone (DHEA) treatment of rats decreases gain of body weight without affecting food intake; simultaneously, the activities of liver malic enzyme and cytosolic glycerol-3-P dehydrogenase are increased. In the present study experiments were conducted to test the possibility that DHEA enhances thermogenesis and decreases metabolic efficiency via trans-hydrogenation of cytosolic NADPH into mitochondrial FADH2 with a consequent loss of energy as heat. The following results provide evidence which supports the proposed hypothesis: (a) the activities of cytosolic enzymes involved in NADPH production (malic enzyme, cytosolic isocitrate dehydrogenase, and aconitase) are increased after DHEA treatment; (b) cytosolic glycerol-3-P dehydrogenase may use both NAD+ and NADP+ as coenzymes; (c) activities of both cytosolic and mitochondrial forms of glycerol-3-P dehydrogenase are increased by DHEA treatment; (d) cytosol obtained from DHEA-treated rats synthesizes more glycerol-3-P during incubation with fructose-1,6-P2 (used as source of dihydroxyacetone phosphate) and NADP+; the addition of citratein vitro further increases this difference; (e) mitochondria prepared from DHEA-treated rats more rapidly consume glycerol-3-P added exogenously or formed endogenously in the cytosol in the presence of fructose-1,6-P2 and NADP+.  相似文献   

20.
Equilibrium constants for reactions catalyzed by ribulose-5-phosphate 3-epimerase, [sigma xylulose-5-P]/[sigma ribulose-5-P] = 1.82, ribose-5-phosphate isomerase, [sigma Rib-5-P]/[sigma ribulose-5-P] = 1.20, transaldolase, [sigma erythrose-4-P] [sigma Fru-6-P]/[sigma sedoheptulose-7-P] [sigma glyceraldehyde 3-P] = 0.37, and transketolase, [sigma Fru-6-P] [sigma glyceraldehyde 3-P]/[sigma erythrose-4-P] [sigma xylulose-5-P] = 29.7 and [sigma Rib-5-P] [sigma xylulose-5-P]/[sigma sedoheptulose-7-P] [sigma glyceraldehyde 3-P] = 0.48, were redetermined under physiological conditions. The equilibrium constant for the combined glucose-6-P dehydrogenase and 6-phosphoglucono-gamma-lactonase reaction, [6-phosphogluconate3-] [NADPH] [H+]2/[Glc-6-P2-] [NADP+], was found to be at least 1 X 10(-9). Using these redetermined equilibrium constants, calculated values of pentose cycle intermediates, based on near equilibrium assumptions and the tissue content of Fru-6-P and glyceraldehyde 3-P, were found to be in good agreement with measured values for male Wistar rats injected with saline, 20 mumol/g pyruvate, 20 mumol/g gluconate, and 20 mumol/g ribose. Measured and calculated values for pentose cycle intermediates in saline injected animals were ribulose-5-P; 3.8 +/- 0.4 and 2.4 +/- 0.1 nmol/g; xylulose-5-P, 5.9 +/- 0.6 nmol/g and 4.3 +/- 0.2 nmol/g; sedoheptulose-7-P, 41.5 +/- 2.4 and 37.6 +/- 2.9 nmol/g; and combined sedopheptulose-7-P and Rib-5-P, 43.0 +/- 2.8 nmol/g and 40.5 +/- 3.0 nmol/g; liver content of erythrose-4-P was less than the detection limits of the assay, 2 nmol/g. Calculated erythrose-4-P was 0.23 +/- 0.01 nmol/g. Liver content of 6-phosphogluconate was 8.5 +/- 0.7 nmol/g. The free cytosolic [NADP+]/[NADPH] ratio calculated from the 6-phosphogluconate dehydrogenase redox couple, 0.0030 +/- 0.0002, was also in good agreement with that calculated from the malic enzyme redox couple, 0.0051 +/- 0.0007, and the isocitrate dehydrogenase redox couple, 0.0066 +/- 0.0008. These data indicate the interdependence of the liver content of glycolytic intermediates and pentose cycle intermediates in ad libitum fed rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号