首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ole Munk 《Acta zoologica》1990,71(2):89-95
Ontogenetic changes in the visual cell layer of the duplex retina during growth of the eye of the deep-sea teleost Gempylus serpens, the snake mackerel, are illustrated by comparing the retina of a small specimen with that of a previously studied adult fish. The small specimen has tightly packed cones spanning the whole width of the visual cell layer and small rods situated in its vitread part. Over most of the retina the cone population consists of single cones arranged in a very regular hexagonal mosaic. The temporalmost retina has a cone population consisting mainly of twin cones arranged in meridional rows. Growth of the eye is associated with an increase in the thickness of the visual cell layer and the density of rods and a total elimination of the densely packed single cones, the retina of the adult fish possessing only a temporally located population of double cones. The radical differences between the retina of the small and adult snake mackerel are probably associated with the different light regimes encountered by small and large specimens.  相似文献   

2.
Summary Structure-function studies were undertaken on cones in the retina of the cyprinid fish, the roach,Rutilus rutilus, in order to provide a basis for analysis of colour information by post-receptoral neurones. Measurements were made with two main aims: (i) To determine by microspectrophotometry the absorbance spectra of the photopigments present within the retina, and correlate these with the morphological types of photoreceptor; (ii) To characterize the morphologies of the photoreceptors at both light and electron microscopical levels and determine their relative abundance in the retina. In addition to red-, green-, and blue-sensitive cones, an ultra-violet-sensitive photoreceptor has been found in a sub-population of miniature short single cones. Possible relevance of this finding to vertebrate vision is discussed.  相似文献   

3.
The role of nitric oxide (NO) as a novel neurochemical mechanism controlling light adaptation of the outer retina is discussed by considering mainly published results. The emphasis is on the retinae of fishes and amphibia, but some data from the mammalian (rabbit) retinae have also been included for completeness. In the fish retina, application of NO donors in the dark caused light-adaptive photomechanical movements of cones. The normal effect of light adaptation in inducing cone contractions was suppressed by pretreatment of retinae with an NO scavenger. NO donors modulated horizontal cell activity by uncoupling the cells' lateral gap junctional interconnections and enhancing negative feedback to cones, again consistent with a light-adaptive role of NO. Direct evidence for light adaptation-induced release of NO has been obtained in fish (carp) and rabbit retinae. The results strongly suggest that control of retinal light adaptation is, under multiple neurochemical control, with NO and dopamine having an interactive role.  相似文献   

4.
A horizontal cell selectively contacting blue-sensitive cones has been intracellularly stained with horseradish peroxidase in the retina of a cyprinid fish, the roach. The light microscopical morphology of the cell belonged to the H3 category of horizontal cells found in cyprinid fish retinae. In response to spectral stimuli, the cell generated chromaticity-type S-potentials that were hyperpolarizing to blue and depolarizing to yellow-orange. A red-sensitive hyperpolarizing component was absent possibly because of suppression of the negative feedback pathway between luminosity-type (H1) horizontal cells and green-sensitive cones.  相似文献   

5.
Summary In the retina of the fish Lebistes three types of cones compensate the chromatic aberration by means of their arrangement in three levels.  相似文献   

6.
The distribution of calbindin and calretinin in the retina of the sturgeon Acipenser baeri was studied with immunocytochemistry. Western blot analysis of brain extracts, together with immunocytochemical results in the retina and brain, indicated the presence of the two calcium-binding proteins in sturgeon. Calbindin immunocytochemistry revealed only a large displaced bipolar cell type with narrowly stratified axons, similar to some mixed rod and cones bipolar cells described in teleosts. The plexus formed by the axons of these cells in the inner plexiform sublayer was similar to that formed by calbindin-immunoreactive diffuse bipolar cells of some mammals. Calretinin immunocytochemistry also stained these displaced bipolar cells, most ganglion cells including displaced ganglion cells (Dogiel cells), and some amacrine cells of the inner nuclear layer. The distribution of calbindin and calretinin immunoreactivities in the retina of a primitive bony fish indicates that these proteins are highly specific to the cell type.  相似文献   

7.
The retina of anchovies is characterized by an unusual arrangement and ultrastructure of cones. In the retina of Japanese anchovies, Engraulis japonicus, three types of cones are distributed into rows. The nasal, central, temporal, and ventro‐temporal regions of the retina were occupied exclusively by the long and short cones. Triple cones, made up of two lateral components and one smaller central component, were found only in the dorsal and ventro‐nasal retinal regions. In the outer segments of all short and long cones from the ventro‐temporal region, the lamellae were oriented along the cell axis and were perpendicular to the lamellae in the long cones, providing a morphological basis for the detection of polarization. This lamellar orientation is unique to all vertebrates. The cones were examined with respect to regional differentiation in their size and spectral properties via light microscopy, transmission electron microscopy, and microspectrophotometry. Various dimensions of cones were measured in preparations of isolated cells. The cones from the ventro‐temporal region had different dimensions than cones of the same type located in other retinal regions. Triple cones from the dorsal region were significantly larger than triple cones from the ventro‐nasal region. The spectral absorbance of the lateral components of triple cones in the ventro‐nasal retina was identical to the absorbance of all long and short cones from the ventro‐temporal region. These are shifted to shorter wavelengths relative to the absorbance of the lateral components of the triple cones located in the dorsal retina. Thus, the retina of the Japanese anchovy shows some features of regional specialization common in other fishes that improves spatial resolution for the upwards and forwards visual axis and provides spectral tuning in downwelling light environment. That results from the differentiation of cone types by size and by different spectral sensitivity of various retinal areas. J. Morphol. 277:472–481, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
This study examines some peculiarities of the eye organization and spectral properties of retinal photoreceptors of the Pacific saury Cololabis saira. The saury has relatively large eyes with a developed accomodation apparatus and an area of enhanced visual acuity (the fovea) in the retina. A specialized pigmented septum is observed in the vitreal cavity, which is supposed to function as a light-shading screen. The retina contains numerous rods and single and double cones arranged in a square mosaic pattern. Microspectrophotometric measurements indicated that their max occurs at 502 (rods), 380 (single cones), and 478/565 (double cones) nm. Such properties can provide color vision in a broad spectral range, including UV light. The peripheral visual apparatus of the Pacific saury is typical of active diurnal predatory fish that inhabit shallow and upper pelagic water layers.  相似文献   

9.
Fishelson, L., Delarea, Y. and Goren, M. 2012. Comparative morphology and cytology of the eye, with particular reference to the retina, in lizardfishes (Synodontidae, Teleostei). —Acta Zoologica (Stockholm) 93 : 68–79. The retinas of nine species of lizardfishes (Synodontidae) are composed of double cones, single cones, and rods. The cones are 16–28 μm long, and their number in the fundus of adult Synodus variegatus reaches ca. 32,900 mm2 (varying from ca. 300,000 to ca. 390,000 in a 10 mm2 of the retina), while in Saurida spp., they number ca. 12,000–14,000/mm2. The cone ellipsoids are with up to 600 mitochondria, 0.5–1.6 μm in diameter. The rods are 30–50 μm long; their outer segments 0.6–1.2 μm thick and 15–18 μm long; their inner segments elongated. Their number varies from 15 to 128 million/retina. In fish of similar dimensions but of different species, the number of visual cells in the retina differs. In all species, the eyes increase from 2.0 mm in diameter in the smallest fish studied to 12 mm in the largest one. With eye growth, the retina in the various species increases from ca. 3.8 mm2 in the smallest fish to ca.160.0 mm2 in the large Saurida macrolepis. The possible ecological aspects of the observed phenomena are discussed.  相似文献   

10.
The outer retina of the smelt Osmerus eperlanus, a visually orientated plankton feeder, of Lake Hiidenvesi (Finland), was examined using both light and transmission electron microscopy. Apart from rods, six morphologically different cone photoreceptor types were identified: short single cones, long single cones, unequal/equal double cones and triple cones (triangular and linear variety). Additionally, in the dorsal region, multiple cone arrangements consisting of up to five members occur. Long single cones and triple cones were observed only sporadically throughout the retina. The incidence of short single cones as a regular element of the cone mosaic is restricted to the ventrotemporal area. The dominant pattern in the Osmerus retina is a pure or a twisted row pattern occurring in all regions. Ventrotemporally, however, square patterns were found as well. The highest cone densities occur in the peripheral ventrotemporal retina. These results indicate that the ventrotemporal region plays an important role in the vision of the smelt. The findings are discussed with respect to the photic habitat conditions and behavioural ecology of the smelt in Lake Hiidenvesi.  相似文献   

11.
The outer retinae of adults of 13 atherinomorph species, representing nine different families, were examined by both light and electron microscopy. The retinae were investigated with respect to photoreceptor types, cone densities, and cone patterns. All data were composed to eye maps. This procedure allows an interspecific comparison of the regional differences within the outer retina among these shallow-water fish. Furthermore, for a more detailed pattern analysis nitro-blue tetrazolium chloride- (NBT)-stainings in the retina of Melanotaenia maccullochi are presented. Apart from rods, eight morphologically different cone types could be identified: short, intermediate, and long single cones, double cones (equal and unequal), triple cones (triangular and linear), and in Ameca splendens one quadruple cone. Dimensions and occurrence of photoreceptors vary among the respective species and within the retinal regions. In the light-adapted state, the cones are arranged in highly ordered mosaics. Five different cone tessellation types were found: row patterns, twisted row patterns, square patterns, pentagonal patterns, and, exclusively in Belone belone, a hexagonal pattern. In Melanotaenia maccullochi the different spectral photoreceptor classes correspond well with the distribution of morphological photoreceptor classes within the mosaic. Double cone density maxima together with a highly ordered cone arrangement usually occur in the nasal and/or ventral to ventrotemporal retina. In most of the species that were examined these high-density regions are presumed to process visual stimuli from the assumed main directions of vision, which mainly depend on feeding behavior and predator pressure. Our findings are discussed with respect to the variable behavioral and visual ecology and phylogeny of the respective species.  相似文献   

12.
Retinal whole-mount preparations from the eyes of the North American paddlefish, Polyodon spathula, were examined with a combination of bright field and differential interference contrast microscopy. The entire retina was mapped and population counts of rod and cone photoreceptors were made at regular intervals throughout the retina. The retina is dominated by rods, but a significant percentage (ca. 38%) of the photoreceptors are cones. Mean cone packing density for the entire retina is 6,402+/-1,216 cones/mm2. There is a small (16%) but statistically significant difference between cone packing density in the dorsal retina (6,674+/-1,168 cones/mm2) and the ventral retina (5,745+/-1,076 cones/mm2). There is no region of unusually high cone concentration that might be construed as a fovea or a visual streak. Mean rod packing density for the entire retina is 10,271+/-1,205 rods/mm2. Except in the far periphery, where rods are less numerous, the density of rods is fairly uniform throughout the retina. The data are discussed with regard to paddlefish habitat and behavior.  相似文献   

13.
The development of the retina of perch, Perca fluviatilis L., was studied for all developmental stages. The density of cones 100 μm-1 was found to decrease with age, although their actual numbers increased. All premetamorphosed perch had pure-cone retinae, the rods developing at, or after metamorphosis. Retinomotor responses were found to commence after metamorphosis when the rods developed. Visual acuity, measured as the minimum separable angle (α), was observed to improve exponentially with age, and its value was found to depend more on the focal length of the lens, than on the number of cones in the retina. The cones in the unspecialized part of the retina were predominantly of the twin type and were related to single cones in a ratio of 4 : 1.  相似文献   

14.
A study of the morphogenesis of the grenadier anchovy retina was undertaken using light and electron microscopy. Five developmental stages from prelarvae 3 days after fertilization to adult fish were studied. In addition to the general morphology of the eye and retina, special emphasis was given to the development of the photoreceptors and pigment epithelium (PE). The earliest retinae showing structural features indicative of a functioning eye are pure cone retinae composed of rows of alternating long and short cones forming a transient, tesselated pattern. At this stage there is a conventional PE containing melanin. In older stages cone rows are separated by the newly formed rods and by PE wedges filled with diffusely reflecting guanine crystallites. The findings are compared with the retinae of other engraulidids and with the development of teleost retinae in general. Moreover, the observed structural changes are discussed with respect to the photic habitat conditions of these anadromous fish that move between coastal waters, estuary, and river.  相似文献   

15.
The formation of double cones in the retina of fry of Perca fluviatilis has been investigated by light and electron microscopy. The retina of newly hatched fry is provided with single cones and rods, single cones being the predominant receptor type. Double cones are seen for the first time 22 days after hatching. Mitoses are observed in the periphery of the retina, but are also seen in more central parts of the retina containing differentiated receptors and a cone mosaic. The fate of the cells resulting from the centrally located mitoses is not known. No signs of longitudinal fission of differentiated single cones are seen. It is suggested that double cones in the retina of perch fry arise by fusion of single cones which associate closely and develop subsurface cisterns coextensive with the region of intimate contact in the ellipsoid. During the first few weeks after hatching, there is a gradual shift in arrangement of the cones. In the newly hatched fry, the single cones are arranged in rows. When double cones are first seen, square-pattern units appear, built up from four double cones and a single cone.  相似文献   

16.
We purpose here to analyze and compare the population and topography of cone photoreceptors in two mouse strains using automated routines, and to design a method of retinal sampling for their accurate manual quantification. In whole-mounted retinas from pigmented C57/BL6 and albino Swiss mice, the longwave-sensitive (L) and the shortwave-sensitive (S) opsins were immunodetected to analyze the population of each cone type. In another group of retinas both opsins were detected with the same fluorophore to quantify all cones. In a third set of retinas, L-opsin and Brn3a were immunodetected to determine whether L-opsin+cones and retinal ganglion cells (RGCs) have a parallel distribution. Cones and RGCs were automatically quantified and their topography illustrated with isodensity maps. Our results show that pigmented mice have a significantly higher number of total cones (all-cones) and of L-opsin+cones than albinos which, in turn, have a higher population of S-opsin+cones. In pigmented animals 40% of cones are dual (cones that express both opsins), 34% genuine-L (cones that only express the L-opsin), and 26% genuine-S (cones that only express the S-opsin). In albinos, 23% of cones are genuine-S and the proportion of dual cones increases to 76% at the expense of genuine-L cones. In both strains, L-opsin+cones are denser in the central than peripheral retina, and all-cones density increases dorso-ventrally. In pigmented animals S-opsin+cones are scarce in the dorsal retina and very numerous in the ventral retina, being densest in its nasal aspect. In albinos, S-opsin+cones are abundant in the dorsal retina, although their highest densities are also ventral. Based on the densities of each cone population, we propose a sampling method to manually quantify and infer their total population. In conclusion, these data provide the basis to study cone degeneration and its prevention in pathologic conditions.  相似文献   

17.
18.
Cellular localization and physiology of GABA-transaminase have been studied in the cyprinid fish retina. Immunohistochemical localization of the enzyme in the goldfish retina revealed a broad distribution pattern, including both outer and inner plexiform layers. Well known inhibitors of GABA-transaminase activity, such as gabaculine and γ-vinyl-GABA, caused an improvement of the temporal frequency transfer functions of luminosity type horizontal cells in the roach retina. In contrast, bicuculline had the opposite effect.Results suggest that GABA-transaminase has a physiological role in the retina consistent with the hypothesis that GABAergic (negative) feed-back from horizontal cells to cones regulates the temporal characteristics of light-evoked electrical activity in the outer plexiform layer.  相似文献   

19.
Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina.  相似文献   

20.
The African weakly electric fish Gnathonemus petersii is well known for its electrosensory capabilities. These animals can detect and distinguish objects through active electrolocation in complete darkness. Because of their nocturnal lifestyle, a low contribution of vision for orientation and object detection has been expected. However, as we show in this review, the retina of G. petersii is highly specialized with hundreds of rods and tens of cones grouped together in bundles in a complex way, ensheathed by a tapetum lucidum. The structure of the bundles goes beyond what would be expected if only photon catch was supposed to be increased. During daytime, the structure of these “macro-receptors” changes dramatically depending on retinomotor movements. During the day, the rods and cones are located in different compartments of the bundle, separated by a narrow canal in the form of a “bottle neck”. Investigations on cell structure and neurochemistry in the retina indicate a general organization that is simpler in terms of bipolar and ganglion cell diversity than in tetrachromatic species such as goldfish, yet similar in terms of neurochemical differentiation of amacrine cells. In both respects, the inner retina of the elephantnose fish bears the greatest similarity to catfish and some deep-sea fish retinae. Neuronal circuits and bundle structure give hints of possible adaptations for contrast and/or movement detection. Behavioral experiments suggest that, in contrast to the vision specialists Lepomis gibbosus, pattern detection of G. petersii is not affected by higher spatial frequencies. A pattern of low spatial frequencies, however, was equally well detected by G. petersii and L. gibbosus. Optomotor response experiments indicate that motion vision is important for Gnathonemus, narrowing down the search for the functional specialization of the Gnathonemus retina and providing a starting point for work on multisensory integration in these fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号