首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热带假丝酵母细胞内pH的测定及其与生长代谢活性的关系   总被引:3,自引:0,他引:3  
应用荧光探针5(6)-双醋酸羧基荧光素 (Carboxyfluorescein diacetate) 测定了产长链二元酸热带假丝酵母 (Candida tropicalis) 细胞内pH (pHi) 值,确定了该探针载入C. tropicalis细胞的适宜条件。用摇瓶培养C. tropicalis细胞,考察了细胞外pH和生长碳源对pHI的影响,实验结果表明:细胞外pH对pHI略有影响,而生长碳源对pHI的影响略为明显。利用5L发酵罐进一步研究了细胞生长代谢活性与pHi的关系,结果表明:细胞比生长速率、CO2比生产速率和葡萄糖比消耗速率与pHi变化密切相关,pHI的增加伴随着细胞生长活力的增加,反之亦然。在pH6.0条件下用葡萄糖和醋酸钠共作碳源培养C. tropicalis细胞时,测得的pHI值维持在5.72~6.15范围内。  相似文献   

2.
Labelling of surface membrane of living ciliates: Paramecium aurelia and Tetrahymena pyriformis with fluorescent compound--cycloheptaamylose-dansyl chloride complex (CDC) has been achieved. Fluorescence micrographs of the dried samples showed specific localization of CDC on the cell membrane without any intracellular penetration. On the contrary the ciliates which have been dead during labelling revealed a non-specific fluorescence of their whole bodies. Microspectrofluorimetric analysis of labelled Paramecium cells was performed with Leitz microspectrograph. Spectrum of fluorescence emission measured over the cell membrane level had maximum at 450 nm. Strikingly, the emission maximum of the cells dead at the moment of labelling was shifted 10 nm to a longer wavelength. The rate of photofading measured in this case was almost 3-fold higher than for the ciliates labelled as living ones. Fluorescence excitation spectra did not show any difference in the peak position. Thus CDC staining appears to be an useful method of supravital labelling of cell surface enabling also to distinguish--on the basis of spectral characteristics--the ciliates being alive from those dead at the moment of fluorochrome binding.  相似文献   

3.
The synthesis of a new benzoxazinone derivative suitable to detect early infection of cultured cells with mycoplasmas is described. p-[beta-(7-dimethylamino 1,4-benzoxazin 2-one 3yl)-vinyl]- phenylpropenoic acid was coupled to kanamycin A, an aminoglycoside leading to a cationic fluorescent probe which fluoresces at 600 nm upon excitation at 490 nm. This fluorescent probe is shown to heavily label the glycocallix of all the mycoplasma strains tested which are found to be associated with contaminated cultured cells and to allow an easy and rapid detection of contamination by fluorescence microscopy and flow cytometry.  相似文献   

4.
We isolated and characterized a green fluorescent protein (GFP) from the sea cactus Cavernularia obesa. This GFP exists as a dimer and has absorption maxima at 388 and 498 nm. Excitation at 388 nm leads to blue fluorescence (456 nm maximum) at pH 5 and below, and green fluorescence (507 nm maximum) at pH 7 and above, and the GFP is remarkably stable at pH 4. Excitation at 498 nm leads to green fluorescence (507 nm maximum) from pH 5 to pH 9. We introduced five amino acid substitutions so that this GFP formed monomers rather than dimers and then used this monomeric form to visualize intracellular pH change during the phagocytosis of living cells by use of fluorescence microscopy. The intracellular pH change is visualized by use of a simple long‐pass emission filter with single‐wavelength excitation, which is technically easier to use than dual‐emission fluorescent proteins that require dual‐wavelength excitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The optical absorption and fluorescence characteristics of 7-animo-actinomycin D were determined to evaluate its potential as a fluorescent cytochemical probe. At pH 7.0, the absorption maximum and fluorescence excitation maximum are both at 503 nm; the fluorescence emission is at 675 nm. When this compound forms complexes with DNA in solution, the absorption and fluorescence excitation maxima shift to 543 nm and the fluorescence emission shifts to 655 nm. The fluorescence quantum yield is 0.016 for 7-amino-actinomycin D free in solution and 0.01-0.02 for complexes with native DNA. The 7-amino-actinomycin D also exhibits fluorescence shifts characteristic of binding when put into solution with poly(dG-dC) poly(dG-dC), but not with poly(dI-dC) poly(dI-dC). The spectral characteristics are the same at pH 7.0 whether the solvent is 0.01 M PO4 with 0.0001 M EDTA or Earle's salts with 0.025 M N-2-hydroxyethylpiperazine-N1-2-ethanesulfonic acid.  相似文献   

6.
We show that a pH-sensitive derivative of the green fluorescent protein, designated ratiometric GFP, can be used to measure intracellular pH (pHi) in both gram-positive and gram-negative bacterial cells. In cells expressing ratiometric GFP, the excitation ratio (fluorescence intensity at 410 and 430 nm) is correlated to the pHi, allowing fast and noninvasive determination of pHi that is ideally suited for direct analysis of individual bacterial cells present in complex environments.  相似文献   

7.
Regulation and maintenance of cell water volume and intracellular pH (pHi) are vital functions that are interdependent; cell volume regulation affects, and is in turn affected by, changes in pHi. Disruption of either function underlies various pathologies. To study the interaction and kinetics of these two mechanisms, we developed and validated a quantitative fluorescence imaging microscopy method to measure simultaneous changes in pHi and volume in single cells loaded with the fluorescent probe BCECF. CWV is measured at the excitation isosbestic wavelength, whereas pHi is determined ratiometrically. The method has a time resolution of <1 s and sensitivity to osmotic changes of approximately 1%. It can be applied in real time to virtually any cell type attached to a coverslip, independently of cellular shape and geometry. Calibration procedures and algorithms developed to transform fluorescence signals into changes in cell water volume (CWV) and examples of applications are presented.  相似文献   

8.
To test the hypothesis that O2 chemoreception in the carotid body (CB) is mediated by cellular acidosis, we simultaneously measured responses of the chemosensory and intracellular pH (pHi) to agents that are known to change pHi and studied the effects of hypoxia and ischemia on these variables in the cat CB. The CB was perfused and superfused in vitro with a modified Tyrode's solution at 36.0 +/- 0.5 degrees C with or without CO2-HCO3- (pH 7.40) and equilibrated at a given PO2. Chemosensory discharges were recorded from the whole carotid sinus nerve. To measure pHi changes, the CB was loaded with the pH-sensitive indicator 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and the fluorescence (excitation 420-490 nm, emission greater than 515 nm) was detected by an intensified charged coupled device camera with an epifluorescence macroscope. Boluses of Tyrode's solution (0.5 ml, free of CO2-HCO3-) containing sodium acetate or NH4Cl prolonged perfusion of acid Tyrode's solution (pH 7.20-6.50), and boluses of Tyrode's solution with CO2-HCO3- were used. A decrease of fluorescence indicated pHi turning acid, and an increase of fluorescence indicated a change in alkaline pHi. Chemosensory activity varied inversely with the fluorescence change after application of these agents. Interruption of perfusate flow or application of hypoxic perfusate resulted in large increases in chemosensory discharge without any change in the fluorescence. The results indicated that chemosensory responses to brief ischemia and hypoxia were not mediated by a fall of pHi of CB cells, whereas those to CO2 and extracellular acidity were associated with decreases in pHi.  相似文献   

9.
Derivatives of fluorescein sensitive to pH are extensively utilized for the determination of intracellular pH (pHi). Available dyes have pKa values of approximately 7.0, and are not well suited for measuring acidic pHi. We examined the fluorescein derivative, 5 (and 6)-carboxy-2',7'-dichlorofluorescein (CDCF) for its potential in the microspectrofluorometric measurement of pHi during acidic conditions. CDCF showed intense fluorescence and pH sensitivity near its "effective" pKa value of 4.2, using a 495/440 nm dual excitation wave-length ratio method. Protein interactions caused fluorescence ratio deviations which were most pronounced at the extremes of pH, whereas calcium and magnesium concentrations had little effect on the fluorescent ratio intensity. Intracellular calibration performed using nigericin in the presence of high potassium eliminated the need to correct for protein interactions, and the ratio method minimized any variations due to dye concentration differences or instrument fluctuation. Intracellular retention of the dye was high, and 95% of the initial signal remained after 1 h. Fluorescence bleaching was 14.5% after 1 h of continuous excitation and cell survival was not affected by dye loading. We conclude that CDCF is an excellent intracellular pH indicator in the pH range of 4-5.  相似文献   

10.
Summary Labelling of surface membrane of living ciliates: Paramecium aurelia and Tetrahymena pyriformis with fluorescent compound — cycloheptaamylose-dansyl chloride complex (CDC) has been achieved. Fluorescence micrographs of the dried samples showed specific localization of CDC on the cell membrane without any intracellular penetration. On the contrary the ciliates which have been dead during labelling revealed a non-specific fluorescence of their whole bodies. Microspectrofluorimetric analysis of labelled Paramecium cells was performed with Leitz microspectrograph. Spectrum of fluorescence emission measured over the cell membrane level had maximum at 450 nm. Strikingly, the emission maximum of the cells dead at the moment of labelling was shifted 10 nm to a longer wavelength. The rate of photofading measured in this case was almost 3-fold higher than for the ciliates labelled as living ones. Fluorescence excitation spectra did not show any difference in the peak position. Thus CDC staining appears to be an useful method of supravital labelling of cell surface enabling also to distinguish — on the basis of spectral characteristics — the ciliates being alive from those dead at the moment of fluorochrome binding.  相似文献   

11.
A method was developed to determine the intracellular pH (pHi) of individual cells by use of fluorescence measurements. The method is based on the observation that the fluorescence excitation spectrum of fluorescein is pH-dependent. Fluorescence excitation spectra from individual rat bone marrow cells treated with fluorescein diacetate (FDA) were compared with those of fluorescein solutions of known pH values. Cells which were suspended in media of pH between 4.0 and 8.1 with high to normal buffering capacities had pHi values equal to those of the media. Cells suspended in media with low buffering capacities maintained a pH,i of 6.7 +/- 0.2. Preliminary results indicated that the pHi of individual cells may also be determined by using flow cytometry.  相似文献   

12.
Short-chain fatty acids (SCFAs) are the major anions in the colonic lumen. Experiments studied how intracellular pH (pHi) of isolated colonocytes was affected by exposure to SCFAs normally found in the colon. Isolated crypt fragments were loaded with SNARF-1 (a fluorescent dye with pH-sensitive excitation and emission spectra) and studied in a digital imaging microscope. Intracellular pH was measured in individual colonocytes as the ratio of fluorescence intensity in response to alternating excitation wavelengths (575/505 nm). After exposure to 65 mM acetate, propionate, n-butyrate, or iso-butyrate in isosmotic Na(+)- free media (substituted with tetramethylammonia), all colonocytes acidified rapidly and then > 90% demonstrated a pHi alkalinization (Na(+)-independent pHi recovery). Upon subsequent removal of the SCFA, pHi alkalinized beyond the starting pHi (a pHi overshoot). Using propionate as a test SCFA, experiments demonstrate that the acidification and pHi overshoot are explained by transmembrane influx and efflux of nonionized SCFA, respectively. The basis for the pHi overshoot is shown to be accumulation of propionate during pHi alkalinization. The Na(+)-independent pHi recovery (a) demonstrates saturable propionate activation kinetics; (b) demonstrates substrate specificity for unmodified aliphatic carbon chains; (c) occurs after exposure to SCFAs of widely different metabolic activity, (d) is electroneutral; and (e) is not inhibited by changes in the K+ gradient, Cl- gradient or addition of the anion transport inhibitors DIDS (1 mM), SITS (1 mM), alpha-cyano-4-hydroxycinnamate (4 mM), or probenicid (1 mM). Results suggest that most mouse colonocytes have a previously unreported SCFA transporter which mediates Na(+)-independent pHi recovery.  相似文献   

13.
亚油酸体系脂质过氧化引起的DNA损伤研究   总被引:5,自引:3,他引:2  
用含两个双键的不饱和脂肪酸-亚油酸作为模型化合物,分析其过氧化程度,同时检测了由于脂质过氧化而引起的DNA损伤,结果表明:在脂质过氧化过程中,DNA与亚油酸过氧化产物反应生成一种荧光物质、其最大激发波长315nm最大发射波长410nm并随着氧化时间增加而增加,与此同时,双链DNA百分含量明显下降,DNA-溴乙锭复合物荧光显著降低,反映了DNA二级结构受到破坏.上述结果揭示了脂质过氧化产物在自由基引起DNA的损伤中可能起重要作用  相似文献   

14.
P Mariot  P Sartor  J Audin  B Dufy 《Life sciences》1991,48(3):245-252
Intracellular pH (pHi) can now be measured at the single cell level using dual emission wavelength microspectrofluorimetry with the fluorescent pH indicator SNARF 1 and its membrane permeant acetoxymethyl ester (SNARF 1/AM). We measured pHi of individual pituitary cells under both basal and stimulated conditions. The emitted fluorescence of SNARF 1 probe was calibrated following experimental manipulations of pHi in two types of rat pituitary cells. The calibration curves obtained in the two cell types were identical. We observed a Gaussian distribution of individual pHi with a wide dispersion (6.95 to 8) in the two cell populations. TRH (10(-7) M) and ionomycin (5 microM) induced a transient acidification followed by a sustained alkalinization, whereas K+ (50 mM) depolarization only exerted a transient acidification. These results show that the dual emission pH indicator SNARF 1 can be used to reliably investigate changes in pHi in individual endocrine cells.  相似文献   

15.
Rapid microspectrofluorometry has been used to evaluate 1-pyrene-butyric acid as an oxygen probe in single living EL2 ascites tissue culture cells. Despite instrumental conditions preventing detection of the pyrene butyric acid maxima at 380 and 400 nm, the probe having penetrated the cell can be easily identified (maximum around 440 nm in unconnected spectra) from the fluorescence emission spectrum, as compared with NAD(P)H emission in controls (maximum around 460 nm). Fluorescence changes during gradually increasing anaerobiosis under nitrogen flow, are compatible with a linear relationship between the reciprocal of the fluorescence intensity and the intracellular oxygen concentration (increase in 430, 434, 442/461 nm ratios at anaerobiosis). The cells having absorbed the probe continue to catabolize glycolytic substrate, but some inhibition is noticeable (e.g. from the amplitude of the NAD(P)H fluorescence increase spectrum due to intracellular addition of glucose-6-P). In principle rapid microspectrofluorometry allows a multiprobe (e.g. 1-pyrene-butyric acid for oxygen, vs NAD(P)H for metabolism) exploration of the living cell.  相似文献   

16.
Indo-1 is a fluorescent calcium probe used to measure intracellular free calcium concentrations. These measurements are often performed by comparing the fluorescence intensities of Indo-1-treated cells at two selected wavelengths corresponding to the maxima of the fluorescence spectra of the calcium-bound and calcium-free forms. In this study, we used an optical multichannel analyser to numerise the fluorescence emitted by a single cell. A computerised resolution of numerised spectra was used on intracellular Indo-1 fluorescence. Calculation of numerical and graphic estimators allows us to evaluate the fit of the resolution. Different sets of characteristic spectra were compared using this method. It appeared that no linear combination of the two known forms of Indo-1 and of the cell autofluorescence can fit with spectra of Indo-1-treated cells. In addition, a study of the physico-chemical properties of Indo-1 shows the existence of two other forms of the molecule: a protonated form (maximum emission at 455 nm) and a form in interaction with proteins (maximum emission at 438 nm). Taking into account the contribution of these two new forms leads to an improved spectral resolution of the fluorescence of Indo-1-treated living cells and, therefore, improves calcium measurements. Moreover, quantification of the amount of the protonated form of Indo-1 allows a measurement of intracellular pH at the same time as calcium determination.  相似文献   

17.
A multiwavelength fluorescence probe is proposed for in situ monitoring of Eschscholtzia californica and Catharanthus roseus plant cell cultures. The potential of the probe as a tool for real-time estimation of biomass and production in secondary metabolites has been studied. The probe excitation range is 270-550 nm and the emission range is 310-590 nm, with a step of 20 nm for both excitation and emission filters. Many endogenous fluorophores such as NAD(P)H, riboflavins (riboflavin and derivatives such as FMN, FAD), tryptamine and tryptophan, and fluorescent secondary metabolites were analyzed simultaneously. NAD(P)H fluorescence signal (350/450 nm) showed to be an adequate signal for estimating cells activity. Riboflavins fluorescence signal (450/530 nm) followed C. roseus cell concentration both for the growth phase and after elicitation with jasmonic acid. Fluorescence from the alkaloids interfered with NAD(P)H signal during the production phase. For C. roseus, tryptophan, tryptamine, ajmalicine and serpentine were monitored by the probe. For E. californica, fluorescence from alkaloids overlapped with riboflavins preventing from using the probe to follow cell growth but global alkaloids production could be followed using the probe.  相似文献   

18.
Far-red fluorescent proteins are required for deep-tissue and whole-animal imaging and multicolor labeling in the red wavelength range, as well as probes excitable with standard red lasers in flow cytometry and fluorescence microscopy. Rapidly evolving superresolution microscopy based on the stimulated emission depletion approach also demands genetically encoded monomeric probes to tag intracellular proteins at the molecular level. Based on the monomeric mKate variant, we have developed a far-red TagRFP657 protein with excitation/emission maxima at 611/657 nm. TagRFP657 has several advantages over existing monomeric far-red proteins including higher photostability, better pH stability, lower residual green fluorescence, and greater efficiency of excitation with red lasers. The red-shifted excitation and emission spectra, as compared to other far-red proteins, allows utilizing TagRFP657 in flow cytometry and fluorescence microscopy simultaneously with orange or near-red fluorescence proteins. TagRFP657 is shown to be an efficient protein tag for the superresolution fluorescence imaging using a commercially available stimulated emission depletion microscope.  相似文献   

19.
Summary A number of methods have been developed to measure intracellular pH (pHi) because of its importance in intracellular events. A major advance in accurate pHi measurement was the development of the ratiometric fluorescent indicator dye, 2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). We have used a fluorescence multi-well plate reader and a ratiometric method for determining pHi in primary cultures of rabbit corneal epithelial (CE) cells with BCECF. Fluorescence was measured at excitation wavelengths of 485±11 nm and 395±12.5 nm, with emission detected at 530±15 nm. Cells grown in multi-well plates were loaded with 4 μM BCECF for 30 min at 37° C. Resting pHi was 7.34±0.03 (2 cultures, N=5 wells). Changes in pHi determined with the fluorescence multi-well plate reader after the addition and removal of NH4Cl or sodium lactate were comparable to changes in cells analyzed with a digitized fluorescence imaging system. A concentration-response relationship involving changes in pHi was easily demonstrated in CE cells after treatment with ionomycin, a calcium ionophore. Low doses of ionomycin (2.5–5 μM), produced a prolonged acidification; 7.5 μM ionomycin produced a transient acidification; and 10 μM ionomycin resulted in a slight alkalinization. We conclude that accurate pHi measurements can be obtained with a ratiometric method with BCECF in a multi-well plate reader. This technology may simplify screening studies evaluating effects of hormones, growth factors, or toxicants on pHi homeostasis.  相似文献   

20.
《Biophysical journal》2022,121(7):1156-1165
Changes in intracellular pH (pHi) reflect metabolic states of cancer cells during tumor growth and dissemination. Therefore, monitoring of pHi is essential for understanding the metabolic mechanisms that support cancer progression. Genetically encoded fluorescent pH sensors have become irreplaceable tools for real-time tracking pH in particular subcellular compartments of living cells. However, ratiometric readout of most of the pH probes is poorly suitable to measure pH in thick samples ex vivo or tissues in vivo including solid tumors. Fluorescence lifetime imaging (FLIM) is a promising alternative to the conventional fluorescent microscopy. Here, we present a quantitative approach to map pHi in cancer cells and tumors in vivo, relying on fluorescence lifetime of a genetically encoded pH sensor SypHerRed. We demonstrate the utility of SypHerRed in visualizing pHi in cancer cell culture and in mouse tumor xenografts using fluorescence lifetime imaging microscopy and macroscopy. For the first time to our knowledge, the absolute pHi value is obtained for tumors in vivo by an optical technique. In addition, we demonstrate the possibility of simultaneous detection of pHi and endogenous fluorescence of metabolic cofactor NADH, which provides a complementary insight into metabolic aspects of cancer. Fluorescence lifetime-based readout and red-shifted spectra make pH sensor SypHerRed a promising instrument for multiparameter in vivo imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号