首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eaf3 is a component of both NuA4 histone acetyltransferase and Rpd3S histone deacetylase complexes in Saccharomyces cerevisiae. It is involved in the regulation of the global pattern of histone acetylation that distinguishes promoters from coding regions. Eaf3 contains a chromo domain at the N terminus that can bind to methylated Lys-36 of histone H3 (H3K36). We report here the crystal structures of the Eaf3 chromo domain in two truncation forms. Unlike the typical HP1 and Polycomb chromo domains, which contain a large groove to bind the modified histone tail, the Eaf3 chromo domain assumes an autoinhibited chromo barrel domain similar to the human MRG15 chromo domain. Compared with other chromo domains, the Eaf3 chromo domain contains a unique 38-residue insertion that folds into two short beta-strands and a long flexible loop to flank the beta-barrel core. Both isothermal titration calorimetry and surface plasmon resonance studies indicate that the interaction between the Eaf3 chromo domain and the trimethylated H3K36 peptide is relatively weak, with a K(D) of approximately 10(-4) m. NMR titration studies demonstrate that the methylated H3K36 peptide is bound to the cleft formed by the C-terminal alpha-helix and the beta-barrel core. Site-directed mutagenesis study and in vitro binding assay results show that the conserved aromatic residues Tyr-23, Tyr-81, Trp-84, and Trp-88, which form a hydrophobic pocket at one end of the beta-barrel, are essential for the binding of the methylated H3K36. These results reveal the molecular mechanism of the recognition and binding of the methylated H3K36 by Eaf3 and provide new insights into the functional roles of the Eaf3 chromo domain.  相似文献   

2.
Recent studies show that heterochromatin-associated protein-1 (HP1) recognizes a 'histone code' involving methylated Lys9 (methyl-K9) in histone H3. Using in situ immunofluorescence, we demonstrate that methyl-K9 H3 and HP1 co-localize to the heterochromatic regions of Drosophila polytene chromosomes. NMR spectra show that methyl-K9 binding of HP1 occurs via its chromo (chromosome organization modifier) domain. This interaction requires methyl-K9 to reside within the proper context of H3 sequence. NMR studies indicate that the methylated H3 tail binds in a groove of HP1 consisting of conserved residues. Using fluorescence anisotropy and isothermal titration calorimetry, we determined that this interaction occurs with a K(D) of approximately 100 microM, with the binding enthalpically driven. A V26M mutation in HP1, which disrupts its gene silencing function, severely destabilizes the H3-binding interface, and abolishes methyl-K9 H3 tail binding. Finally, we note that sequence diversity in chromo domains may lead to diverse functions in eukaryotic gene regulation. For example, the chromo domain of the yeast histone acetyltransferase Esa1 does not interact with methyl- K9 H3, but instead shows preference for unmodified H3 tail.  相似文献   

3.
In mammalian cells, as in Schizosaccharomyces pombe and Drosophila, HP1 proteins bind histone H3 tails methylated on lysine 9 (K9). However, whereas K9-methylated H3 histones are distributed throughout the nucleus, HP1 proteins are enriched in pericentromeric heterochromatin. This observation suggests that the methyl-binding property of HP1 may not be sufficient for its heterochromatin targeting. We show that the association of HP1α with pericentromeric heterochromatin depends not only on its methyl-binding chromo domain but also on an RNA-binding activity present in the hinge region of the protein that connects the conserved chromo and chromoshadow domains. Our data suggest the existence of complex heterochromatin binding sites composed of methylated histone H3 tails and RNA, with each being recognized by a separate domain of HP1α.  相似文献   

4.
We report here the structure of the putative chromo domain from MOF, a member of the MYST family of histone acetyltransferases that acetylates histone H4 at Lys-16 and is part of the dosage compensation complex in Drosophila. We found that the structure of this domain is a beta-barrel that is distinct from the alpha + beta fold of the canonical chromo domain. Despite the differences, there are similarities that support an evolutionary relationship between the two domains, and we propose the name "chromo barrel." The chromo barrel domains may be divided into two groups, MSL3-like and MOF-like, on the basis of whether a group of conserved aromatic residues is present or not. The structure suggests that, although the MOF-like domains may have a role in RNA binding, the MSL3-like domains could instead bind methylated residues. The MOF chromo barrel shares a common fold with other chromatin-associated modules, including the MBT-like repeat, Tudor, and PWWP domains. This structural similarity suggests a probable evolutionary pathway from these other modules to the canonical chromo domains (or vice versa) with the chromo barrel domain representing an intermediate structure.  相似文献   

5.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   

6.
7.
Heterochromatin protein 1 (HP1) binds to the nucleosome via a methylated lysine residue 9 of histone H3 which is catalyzed by a histone methyltransferase such as SUV39H1. Although co-localization of HP1 and SUV39H1 has been evident in immunostaining and immunoprecipitation experiments, direct protein-protein interactions have remained to be characterized. We examined interactions between mouse HP1 alpha (mHP1 alpha) and SUV39H1 in yeast and in vitro. A yeast two-hybrid and a glutathione S-transferase pull-down study indicated that the chromo shadow domain of mHP1 alpha directly interacts with the N-terminal 39 amino acid stretch of SUV39H1. The IY165/168EE mutation in the chromo shadow domain of mHP1 alpha abrogated a self-interaction and this mutant did not interact with SUV39H1. The 13-mer peptide containing a consensus sequence for binding to the dimer surface formed by the chromo shadow domains inhibited interaction between mHP1 alpha and SUV39H1. It seems that self-interaction through the chromo shadow domain of HP1 is crucial for recruitment of SUV39H1 onto nucleosomes.  相似文献   

8.
9.
10.
Proteins that possess a chromo domain are well‐known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy‐terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi‐directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates.  相似文献   

11.
Heterochromatin protein 1 (HP1) is a nonhistone chromosomal protein primarily associated with the pericentric heterochromatin and telomeres in Drosophila. The molecular mechanism by which HP1 specifically recognizes and binds to chromatin is unknown. The purpose of this study was to test whether HP1 can bind directly to nucleosomes. HP1 binds nucleosome core particles and naked DNA. HP1-DNA complex formation is length-dependent and cooperative but relatively sequence-independent. We show that histone H4 amino-terminal peptides bind to monomeric and dimeric HP1 in vitro. Acetylation of lysine residues had no significant effect on in vitro binding. The C-terminal chromo shadow domain of HP1 specifically binds H4 N-terminal peptide. Neither the chromo domain nor chromo shadow domain alone binds DNA; intact native HP1 is required for such interactions. Together, these observations suggest that HP1 may serve as a cross-linker in chromatin, linking nucleosomal DNA and nonhistone protein complexes to form higher order chromatin structures.  相似文献   

12.
Heterochromatin-associated protein 1 (HP1) is thought to affect chromatin structure through interactions with other proteins in heterochromatin. Chromo domains located near the amino (amino chromo) and carboxy (chromo shadow) termini of HP1 may mediate such interactions, as suggested by domain swapping, in vitro binding and 3D structural studies . Several HP1-associated proteins have been reported, providing candidates that might specifically complex with the chromo domains of HP1. However, such association studies provide little mechanistic insight and explore only a limited set of potential interactions in a largely non-competitive setting. To determine how chromo domains can selectively interact with other proteins, we probed random peptide phage display libraries using chromo domains from HP1. Our results demonstrate that a consensus pentapeptide is suffident for specific interaction with the HP1 chromo shadow domain. The pentapeptide is found in the amino acid sequence of reported HP1-associated proteins, including the shadow domain itself. Peptides that bind the shadow domain also disrupt shadow domain dimers. Our results suggest that HP1 dimerization, which is thought to mediate heterochromatin compaction and cohesion, occurs via pentapeptide binding. In general, chromo domains may function by avidly binding short peptides at the surface of chromatin-associated proteins.  相似文献   

13.
14.
15.
L3MBTL1, a histone-methylation-dependent chromatin lock   总被引:11,自引:0,他引:11  
  相似文献   

16.
As essential components of the molecular machine assembling heterochromatin in eukaryotes, HP1 (Heterochromatin Protein 1) proteins are key regulators of genome function. While several high-resolution structures of the two globular regions of HP1, chromo and chromoshadow domains, in their free form or in complex with recognition-motif peptides are available, less is known about the conformational behavior of the full-length protein. Here, we used NMR spectroscopy in combination with small angle X-ray scattering and dynamic light scattering to characterize the dynamic and structural properties of full-length human HP1β (hHP1β) in solution. We show that the hinge region is highly flexible and enables a largely unrestricted spatial search by the two globular domains for their binding partners. In addition, the binding pockets within the chromo and chromoshadow domains experience internal dynamics that can be useful for the versatile recognition of different binding partners. In particular, we provide evidence for the presence of a distinct structural propensity in free hHP1β that prepares a binding-competent interface for the formation of the intermolecular β-sheet with methylated histone H3. The structural plasticity of hHP1β supports its ability to bind and connect a wide variety of binding partners in epigenetic processes.  相似文献   

17.
18.
The α, β and γ isoforms of mammalian heterochromatin protein 1 (HP1) selectively bind to methylated lysine 9 of histone H3 via their chromodomains. Although the phenotypes of HP1-knockout mice are distinct for each isoform, the molecular mechanisms underlying HP1 isoform-specific function remain elusive. In the present study, we found that in contrast to HP1α, HP1γ could not bind tri-methylated H3 lysine 9 in a reconstituted tetra-nucleosomes when the nucleosomes were in an uncompacted state. The hinge region connecting HP1''s chromodomain and chromoshadow domain contributed to the distinct recognition of the nucleosomes by HP1α and HP1γ. HP1γ, but not HP1α, was strongly enhanced in selective binding to tri-methylated lysine 9 in histone H3 by the addition of Mg2+ or linker histone H1, which are known to induce compaction of nucleosomes. We propose that this novel property of HP1γ recognition of lysine 9 in the histone H3 tail in different nucleosome structures plays a role in reading the histone code.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号