首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcitroic acid (1 alpha-hydroxy-23 carboxy-24,25,26,27-tetranorvitamin D(3)) is known to be the major water-soluble metabolite produced during the deactivation of 1 alpha,25-dihydroxyvitamin D(3). This deactivation process involves a series of oxidation reactions at C(24) and C(23) leading to side-chain cleavage and, ultimately, formation of the calcitroic acid. Like 1 alpha,25-dihydroxyvitamin D(3), 1 alpha,25-dihydroxyvitamin D(2) is also known to undergo side-chain oxidation; however, to date there has been no evidence suggesting that 1 alpha,25-dihydroxyvitamin D(2) undergoes side-chain cleavage. To investigate this possibility, we studied 1 alpha,25-dihydroxyvitamin D(2) metabolism in HPK1A-ras cells as well as the well characterized perfused rat kidney system. Lipid and aqueous-soluble metabolites were prepared for characterization. Aqueous-soluble metabolites were subjected to reverse-phase HPLC analysis. The major aqueous-soluble metabolite from both the kidney and cell incubations comigrated with authentic calcitroic acid on two reverse-phase HPLC columns of different chemistry. The putative calcitroic acid from the cell and kidney incubations was methylated and found to comigrate with methylated authentic standard on straight-phase and reverse-phase HPLC columns. The identity of the methylated metabolite from cell incubations was also confirmed by mass spectral analysis. These data show, for the first time, that calcitroic acid is a major terminal product for the deactivation of 1 alpha,25-dihydroxyvitamin D(2). Intermediates leading to the formation of the calcitroic acid in the 1 alpha,25-dihydroxyvitamin D(2) metabolism pathway are currently being studied.  相似文献   

2.
Hybridoma cell lines secreting antibodies for vitamin D3 metabolites have been generated by fusing splenocytes from BALB/c mice immunized with 3 beta-glutaryl-25-hydroxyvitamin D3 conjugated to bovine serum albumin (3 beta-glu-25-OH-D3-BSA) and Sp2/O-Ag14 myeloma cells. Purification of monoclonal antibodies from culture media or ascites fluids was accomplished by procedures including affinity chromatography on Protein A-Sepharose 4B. Each monoclonal antibody was analyzed as to its affinity and specificity by equilibrium dialysis and an enzyme immunoassay (EIA) based on a double antibody system. It was demonstrated that clone 1C2-60 produced an antibody highly specific to 1 alpha,25-dihydroxyvitamin D3 (calcitriol), and the clone 2B3-66 antibody was reactive to 25-hydroxyvitamin D3 and similar structural compounds. These two monoclonal antibodies produced by 1C2-60 and 2B3-66 were determined to belong to the IgG2a class, and their affinity constants (Ka) with 3 beta-glu-25-OH-D3 were demonstrated to be 3.6 X 10(9) M-1 and 2.9 X 10(9) M-1, respectively, at 4 degrees C. The characteristics of these monoclonal antibodies were compared with those of conventional antibodies raised in mice and rabbits. Finally, by using monoclonal antibody 1C2-60, a sensitive EIA has been developed that can detect 10 pg of calcitriol.  相似文献   

3.
Chemically synthesized 1 alpha-hydroxy-25-fluorovitamin D3 was compared to 1,25-dihydroxyvitamin D3 for potency in the chick intestinal cytosol-binding protein assay, induction of intestinal calcium transport, mobilization of calcium from bone, and epiphyseal plate calcification in the rat. The 25-fluorinated analogue causes 50% displacement of 1,25-dihydroxy[23,24-3H]D3 at 1.8 X 10(-8) M in the competitive protein-binding assay, whereas only 5.6 X 10(-11) M of unlabeled 1,25-dihydroxyvitamin D3 is needed for equal competition. This 315-fold difference between and 1 alpha-hydroxy-25-fluorovitamin D3 indicates that the fluoro analogue is about equipotent with 1 alpha-hydroxyvitamin D3 in the protein-binding assay. However, 1 alpha-hydroxy-25-fluorovitamin D3 is 1/50 as active as 1,25-dihydroxyvitamin D3 in vivo in the stimulation of intestinal calcium transport and bone calcium mobilization in vitamin D deficient rats on a low-calcium diet. Likewise, 1 alpha-hydroxy-25-fluorovitamin D3 is about 40 times less active than 1,25-dihydroxyvitamin D3 in inducing endochondrial calcification in rachitic rats. No selective actions of 1alpha-hydroxy-25-fluorovitamin D3 were noted. Since the 25 position of the analogue is blocked by a fluorine atom, it appears that 25-hydroxylation of 1 alpha-hydroxylated vitamin D compounds in vivo is not an obligatory requirement for appreciable vitamin D activity.  相似文献   

4.
Surface micron-scale and submicron scale features increase osteoblast differentiation and enhance responses of osteoblasts to 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)]. beta(1) integrin expression is increased in osteoblasts grown on Ti substrates with rough microarchitecture, and it is regulated by 1alpha,25(OH)(2)D(3) in a surface-dependent manner. To determine if beta(1) has a role in mediating osteoblast response, we silenced beta(1) expression in MG63 human osteoblast-like cells using small interfering RNA (siRNA). In addition, MG63 cells were treated with two different monoclonal antibodies to human beta(1) to block ligand binding. beta(1)-silenced MG63 cells grown on a tissue culture plastic had reduced alkaline phosphatase activity and levels of osteocalcin, transforming growth factor beta(1), prostaglandin E(2), and osteoprotegerin in comparison with control cells. Moreover, beta(1)-silencing inhibited the effects of surface roughness on these parameters and partially inhibited effects of 1alpha,25(OH)(2)D(3). Anti beta(1) antibodies decreased alkaline phosphatase but increase osteocalcin; effects of 1alpha,25(OH)(2)D(3) on cell number and alkaline phosphatase were reduced and effects on osteocalcin were increased. These findings indicate that beta(1) plays a major and complex role in osteoblastic differentiation modulated by either surface microarchitecture or 1alpha,25(OH)(2)D(3). The results also show that beta(1) mediates, in part, the synergistic effects of surface roughness and 1alpha,25(OH)(2)D(3).  相似文献   

5.
Deficiency in Vitamin D and its metabolites leads to a failure in bone formation primarily caused by dysfunctional mineralization, suggesting that Vitamin D analogs might stimulate osteoblastic bone formation and mineralization. In this study, we compare the effect of selected Vitamin D analogs and active metabolite, 1alpha,25-dihydroxyvitamin D(3), 19-nor-1alpha, 25-dihydroxyvitamin D(2), and 1alpha-hydroxyvitamin D(2) or 1alpha,25-dihydroxyvitamin D(2) on bone formation and resorption. In a mouse calvariae bone primary organ culture system, all Vitamin D analogs and metabolite tested-stimulated collagen synthesis in a dose-dependent manner and 19-nor-1alpha, 25-dihydroxyvitamin D(2) was the most efficacious among three. 19-nor-1alpha, 25-dihydroxyvitamin D(2) and 1alpha,25-dihydroxyvitamin D(2) showed similar potencies and 1alpha,25-dihydroxyvitamin D(3) was less potent than others. Osteocalcin was also up-regulated in a dose-dependent manner, suggesting that the three Vitamin D analogs have the equal potencies on bone formation. 25-Hydroxyvitamin D-24-hydroxylase expression was induced in a dose-dependent manner and 19-nor-1alpha, 25-dihydroxyvitamin D(2) was less potent than other two compounds. In a mouse calvariae organ culture, all induced a net calcium release from calvariae in a dose-dependent manner, but the potency is in the order of 1alpha,25-dihydroxyvitamin D(2) congruent with1alpha,25-dihydroxyvitamin D(3)>19-nor-1alpha, 25-dihydroxyvitamin D(2). In a Vitamin D/calcium-restricted rat model, all caused an elevation in serum calcium in a dose-dependent manner. There is no significant difference between 1alpha,25-dihydroxyvitamin D(3) and 1alpha-hydroxyvitamin D(2) in potencies, but 19-nor-1alpha, 25-dihydroxyvitamin D(2) is at least 10-fold less potent than the other two compounds. Our results suggest that Vitamin D analogs have direct effects on bone resorption and formation, and 19-nor-1alpha, 25-dihydroxyvitamin D(2) may be more effective than 1alpha,25-dihydroxyvitamin D(3) and 1alpha-hydroxyvitamin D(2) on stimulating anabolic bone formation.  相似文献   

6.
The metabolism of 25-hydroxyvitamin D(3) was studied with a crude mitochondrial cytochrome P450 extract from pig kidney and with recombinant human CYP27A1 (mitochondrial vitamin D(3) 25-hydroxylase) and porcine CYP2D25 (microsomal vitamin D(3) 25-hydroxylase). The kidney mitochondrial cytochrome P450 catalyzed the formation of 1alpha,25-dihydroxyvitamin D(3), 24,25-dihydroxyvitamin D(3) and 25,27-dihydroxyvitamin D(3). An additional metabolite that was separated from the other hydroxylated products on HPLC was also formed. The formation of this 25-hydroxyvitamin D(3) metabolite was dependent on NADPH and the mitochondrial electron transferring protein components. A monoclonal antibody directed against purified pig liver CYP27A1 immunoprecipitated the 1alpha- and 27-hydroxylase activities towards 25-hydroxyvitamin D(3) as well as the formation of the unknown metabolite. These results together with substrate inhibition experiments indicate that CYP27A1 is responsible for the formation of the unknown 25-hydroxyvitamin D(3) metabolite in kidney. Recombinant human CYP27A1 was found to convert 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3), 25,27-dihydroxyvitamin D(3) and a major metabolite with the same retention time on HPLC as that formed by kidney mitochondrial cytochrome P450. Gas chromatography-mass spectrometry (GC-MS) analysis of the unknown enzymatic product revealed it to be a triol different from other known hydroxylated 25-hydroxyvitamin D(3) metabolites such as 1alpha,25-, 23,25-, 24,25-, 25,26- or 25,27-dihydroxyvitamin D(3). The product had the mass spectrometic properties expected for 4beta,25-dihydroxyvitamin D(3). Recombinant porcine CYP2D25 converted 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3) and 25,26-dihydroxyvitamin D(3). It can be concluded that both CYP27A1 and CYP2D25 are able to carry out multiple hydroxylations of 25-hydroxyvitamin D(3).  相似文献   

7.
8.
We have examined the ability of blood-derived monocytes and macrophages isolated from a patient with alveolar rhabdomyosarcoma and hypercalcaemia, to form 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) or 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3) from 25-hydroxyvitamin D3 (25(OH)D3). Adherent monocyte-macrophage cells incubated with 25(OH)D3 over the initial 2 days in culture synthesized 1.9 pmol 24,25(OH)2D3/h/incubation (representing 0.63 pmol/h/10(6) cells), whereas macrophages synthesized 1.03 and 1.15 pmol 1 alpha,25(OH)2D3/h/incubation after 1 and 4 weeks in culture respectively. In a further experiment synthesis of 1 alpha,25(OH)2D3 by long-term cultured macrophages fell from 2.25 to 0.04 pmol/h/incubation following exposure to 10 nM 1 alpha,25(OH)2D3 for 7 days, whereas 24,25(OH)2D3 synthesis was induced (0.46 pmol/h/incubation). The vitamin D3 metabolites were identified by co-chromatography with authentic 24,25(OH)2D3 or 1 alpha,25(OH)2D3 in three different high-performance liquid chromatography systems. Serum 1 alpha,25(OH)2D3 in the patient was markedly suppressed at 5 pg/ml (normal 20-50 pg/ml) indicating that raised 1 alpha,25(OH)2D3 was not the cause of the hypercalcaemia, but rather, that raised calcium may have suppressed renal 1 alpha,25(OH)2D3 synthesis. Administration of APD (3-amino-1-hydroxypropylidine-1,1-bisphosphonate) corrected the hypercalcaemia in the patient suggesting that increased bone resorption was responsible for the raised calcium. The results of this study show for the first time that immature blood derived monocyte-macrophage cells can synthesize 24,25(OH)2D3 before they mature into macrophages able to synthesize 1 alpha,25(OH)2D3.  相似文献   

9.
Three protein fractions of the cytosol of the chick parathyroid glands, which had the sedimentation constants of 2.5 S, 3.7 S and 5.5 S, were found to bind with 1 alpha,25-dihydroxyvitamin D3. Among these proteins, the 3.7 S protein was assumed to be the specific receptor protein. The 3.7 S receptor protein was also capable of binding to 1 alpha,24-dihydroxyvitamin D3 but not 25-hydroxyvitamin D3. The binding affinity of 1 alpha,24(R)-dihydroxyvitamin D3 to the 3.7 S receptor protein was estimated to be 1.2 times greater than that of 1 alpha,25-dihydroxyvitamin D3, while 1 alpha,25-dihydroxyvitamin D3 bound to the receptor protein about 10 times stronger than 1 alpha,24(S)-dihydroxyvitamin D3. The dissociation constant for the receptor-1 alpha,25-dihydroxyvitamin D3 complex at 0 degrees C was 2.7 x 10(-11) M, the dissociation constants were calculated to be 2.2 x 10(-11) M and 2.6 x 10(-10) M for the complexes with 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3.  相似文献   

10.
The binding of vitamin D3 analogues to the chick intestinal cytosol receptor was studied. In intestinal cytosol fraction, receptor proteins having the sedimentation constant of 2.5 S and 3.7 S to which 1 alpha,25-dihydroxyvitamin D3 binds were present, and the latter was specific for the compound. The binding of 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3 to the receptor was also observed, while very weak binding was seen in the case of 24(R)25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. The binding affinity of 1 alpha,24(R)-dihydroxyvitamin D3 to the 3.7 S receptor was 1.3 times as high as that of 1 alpha,25-dihydroxyvitamin D3, whereas those of 1 alpha,24(S)-dihydroxyvitamin D3, 1 alpha-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were 10, 304 and 652 times lower than 1 alpha,25-dihydroxyvitamin D3, respectively. The dissociation constant of the receptor-1 alpha,25-dihydroxyvitamin D3 complex at 0 degrees C was 3.0 x 10(-11) M, and the dissociation constants were calculated to be 2.4 x 10(-11) M and 2.7 x 10(-10) M for the complexes with 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3, respectively.  相似文献   

11.
MC3T3-G2/PA6 (PA6) cells established from newborn mouse calvaria are preadipocytic stromal cells, which differentiate into adipocytes in response to glucocorticoids. We examined the effects of 1 alpha,25-dihydroxyvitamin D3[1 alpha,25(OH)2D3] on adipogenesis in PA6 cells. When PA6 cells were cultured with 10(-8) M dexamethasone, adipocytes containing oil red O-positive droplets first appeared on day 7 (3 days after confluence was attained) and the maximal synthesis of neutral lipids occurred on day 12. Simultaneous addition of 1 alpha,25(OH)2D3 at 10(-9)M completely blocked this dexamethasone-induced neutral lipid synthesis throughout the 14-day culture period. Dose-response studies of vitamin D3 derivatives showed that 1 alpha,25(OH)2D3 was the most potent in inhibiting neutral lipid synthesis in PA6 cells, followed by 1 alpha-hydroxyvitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3, in that order. Dexamethasone greatly enhanced incorporation of [14C]-acetic acid into triacylglycerol in PA6 cells. The incorporation was markedly inhibited by the addition of 10(-9) M 1 alpha,25(OH)2D3. Instead, 1 alpha,25(OH)2D3 greatly increased incorporation of [14C]-acetic acid into phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, irrespective of the presence or absence of dexamethasone. These results suggest that 1 alpha,25(OH)2D3 modulation of lipid metabolism in bone marrow stromal cells is receptor mediated.  相似文献   

12.
The in vitro effect of 1 alpha,25-dihydroxyvitamin D3 on the function of beta cells of the endocrine pancreas was investigated. Neonatal islets maintained in serum-free medium, or medium supplemented with 0.5% fetal bovine serum achieved a 2.5-fold increase in medium insulin levels in response to 10(8) M 1 alpha,25-dihydroxyvitamin D3 (P less than 0.001). The effect of 1,25-dihydroxyvitamin D3 required at least 96 h treatment to become evident and was similar at medium glucose concentrations of 10 and 20 mM. Cell-associated insulin was increased in 1 alpha,25-dihydroxyvitamin D3-treated cultures maintained in 0.5% serum. These data suggest that 1 alpha,25-dihydroxyvitamin D3 may have a direct effect in the beta cell.  相似文献   

13.
Zinc increases the activity of vitamin D-dependent promoters in osteoblasts   总被引:4,自引:0,他引:4  
Zinc modulates the structure and binding of the DNA binding domain of the 1alpha,25-dihydroxyvitamin D(3) receptor to specific vitamin D response element DNA (Nature Biotechnology 16, 262-266, 1998). To determine whether zinc alters 1alpha,25-dihydroxyvitamin D(3)-regulated genes in cells, we permanently transfected rat osteoblasts with two vitamin D-dependent promoter-reporter systems and examined their responses to 1alpha,25-dihydroxyvitamin D(3) in the presence of increasing amounts of extracellular zinc. When extracellular zinc concentrations were increased in the presence of 1alpha,25-dihydroxyvitamin D(3), there was an increase in the activity of 1alpha,25-dihydroxyvitamin D(3)-dependent promoters with increasing concentrations of zinc. The effect was specific for zinc since metals such as copper failed to increase the activity of 1alpha,25-dihydroxyvitamin D(3)-dependent promoters. The concentration of the vitamin D receptor within the cell and the affinity of 1alpha,25-dihydroxyvitamin D(3) for its receptor remained unchanged with added zinc. Our results show that zinc increases the activity of 1alpha,25-dihydroxyvitamin D(3)-dependent promoters in osteoblasts.  相似文献   

14.
Four possible diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were chemically synthesized and compared with the natural metabolite by high-pressure liquid chromatography. The four synthetic diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone could be separated into three peaks by high-pressure liquid chromatography. The naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum and in vitro incubation of chick kidney homogenates comigrated with 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. The four diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were tested against naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone to determine their relative competition in the 1 alpha,25-dihydroxyvitamin D3-specific cytosol receptor binding assay for 1 alpha,25-dihydroxyvitamin D3. 23(S)25(S)-1 alpha,25-Dihydroxyvitamin D3-26,23-lactone was the best competitor followed by 23(R)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone and 23(R)25(S)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone, and 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was the poorest competitor. Natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum had almost the same binding affinity as that of 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. These data unequivocally demonstrate that the stereochemistry of the natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone has the 23(S) and 25(R) configuration.  相似文献   

15.
In order to study the effects of vitamin D metabolites on bone metabolism, clone MC3T3-E1 cells, which have retained osteoblastic activity, were cultured with various concentrations of the hormone, 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25 (OH)2D3]. A physiological concentration of 1 alpha, 25 (OH)2D3 stimulated alkaline phosphatase (ALP) activity in the cells. Other metabolites--1 alpha, 24-dihydroxyvitamin D3 [1 alpha, 24 (OH)2D3], 1 alpha-hydroxyvitamin D3 [1 alpha (OH)D3], and 24R,25-dihydroxyvitamin D3 [24R,25 (OH)2D3]--also induced increases in ALP activity in a dose-dependent fashion. However, their effective concentrations were 100 or 1,000 times greater than that of 1 alpha, 25 (OH)2D3. Hormone-induced and native ALP activities in the cells were of the same type as that found in newborn mouse calvaria; that is, they were heat-labile, L-homoarginine- and levamisole-sensitive, and L-phenylalanine-insensitive (liver-bone-kidney type). These results show that vitamin D metabolites stimulate bone formation in vitro and that they may be involved in bone formation in vivo as well.  相似文献   

16.
Novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-dihydroxyvitamin D3 and 26-homo-delta 22-1 alpha,25(R)-dihydroxyvitamin D3 were compared with the native hormone, 1,25-dihydroxyvitamin D3, and with other vitamin D3 derivatives, in inhibition of cell growth, induction of phenotypic differentiation, and c-myc mRNA reduction of HL-60 cells. The degree of inhibition in cell growth caused by 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 was the greatest followed by 26-homo-delta 22-1 alpha,25(R)-(OH)2D3. The ability to reduce NBT was parallel to that to inhibit cellular proliferation. 26-homo-delta 22-1 alpha,25(S)-(OH)2D3, 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, 24-homo-24-F2-1 alpha,25-(OH)2D3, and 1 alpha,24(R)-(OH)2-26-Cl-D3 were more active than 1 alpha,25-(OH)2D3 in the induction of OK-M1+ and OK-Mo-2+ HL-60 cells. Using two color flow cytometric analysis, the percentages of OK-M5(+)- and OK-DR(+)-HL-60 cells were 33% in the treatment with 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 plus interferon-gamma (IFN-gamma) but 14% in the treatment with 1 alpha,25-(OH)2D3 plus IFN-gamma. 26-Homo-delta 22-1 alpha,25(S)-(OH)2D3 has an inhibitory effect on c-myc reduction in treated HL-60 cells. These results suggest that the novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 and 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, have preferential activity in inducing phenotypic differentiation and in inducing cell proliferation related c-myc mRNA activity.  相似文献   

17.
In continuing efforts towards the synthesis of biologically active vitamin D compounds of potential therapeutic value, new 2-methylene-1alpha-hydroxy-19-norvitamin D(3) analogs 3 and 4 with modified alkyl side chains have been synthesized. The key synthetic step involved Lythgoe-type Wittig-Horner coupling of Windaus-Grundmann type ketones 9, possessing different 17beta-alkyl substituents, with the phosphine oxide 10 prepared from (-)-quinic acid. The prepared vitamins 3 and 4 were ca. eight times less potent than 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) (1) in binding to the rat intestinal vitamin D receptor (VDR). In comparison with the hormone 1 they exhibited slightly lower cellular HL-60 differentiation activity. When tested in vivo; the analog 3 was characterized by very high bone calcium mobilizing potency and intestinal calcium transport activity. Unexpectedly, the 25-methyl compound 4 showed marked calcemic activity in both assays. Computational docking of the vitamin 3 into the binding pocket of the rat vitamin D receptor is also reported.  相似文献   

18.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

19.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

20.
The active vitamin D analog, 19-nor-1alpha,25-dihydroxyvitamin D2 (19-nor-1alpha,25-(OH)2D2), has a similar structure to the natural vitamin D hormone, 1a,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3), but lacks the C10-19 methylene group and possesses an ergosterol/ vitamin D2 rather than a cholesterol/vitamin D3 side chain. We have used this analog to investigate whether any of these structural features has any effect upon the type and rate of in vitro metabolism observed. Using a vitamin D-target cell, the human keratinocyte, HPK1A-ras, we observed formation of a number of metabolites, three of which were purified by extensive HPLC and conclusively identified by a combination of GC-MS and chemical derivatization as 19-nor-1alpha,24,25-(OH) 3D2, 19-nor-1alpha,24,25,26-(OH) 4D2, and 19-nor-1alpha,24,25,28-(OH)4,D2. The first metabolite is probably a product of the vitamin D-inducible cytochrome P450, P450cc24 (CYP24), while the latter two metabolites are likely to be further metabolic products of 19-nor-1alpha,24,25-(OH)3D2. These hydroxylated metabolites resemble those identified by other workers as products of the metabolism of 1alpha,25-(OH)2D2 in the perfused rat kidney. It therefore appears from the similar metabolic fate of 19-nor-1alpha,25-(OH)2D2 and 1alpha,25-(OH)2D2 that the lack of the C10-19 methylene group has little effect upon the nature of the lipid-soluble metabolic products and the rate of formation of these products seems to be comparable to that of products of 1alpha,25-(OH)2D3 in vitamin D-target cells. We also found extensive metabolism of 19-nor-1alpha,25(OH)2D2 to water-soluble metabolites in HPK1A-ras, metabolites which remain unidentified at this time. When we incubated 19-nor-1alpha,25-(OH)2D2 with the liver cell line HepG2, we obtained only 19-nor-1alpha,24,25-(OH)3D2. We conclude that 19-nor-1alpha,25-(OH)2D2 is efficiently metabolized by both vitamin D-target cells and liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号