首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent decades, the Florida reef tract has lost over 95% of its coral cover. Although isolated coral assemblages persist, coral restoration programs are attempting to recover local coral populations. Listed as threatened under the Endangered Species Act, Acropora cervicornis is the most widely targeted coral species for restoration in Florida. Yet strategies are still maturing to enhance the survival of nursery‐reared outplants of A. cervicornis colonies on natural reefs. This study examined the survival of 22,634 A. cervicornis colonies raised in nurseries along the Florida reef tract and outplanted to six reef habitats in seven geographical subregions between 2012 and 2018. A Cox proportional hazards regression was used within a Bayesian framework to examine the effects of seven variables: (1) coral‐colony size at outplanting, (2) coral‐colony attachment method, (3) genotypic diversity of outplanted A. cervicornis clusters, (4) reef habitat, (5) geographical subregion, (6) latitude, and (7) the year of monitoring. The best models included coral‐colony size at outplanting, reef habitat, geographical subregion, and the year of monitoring. Survival was highest when colonies were larger than 15 cm (total linear extension), when outplanted to back‐reef and fore‐reef habitats, and when outplanted in Biscayne Bay and Broward–Miami subregions, in the higher latitudes of the Florida reef tract. This study points to several variables that influence the survival of outplanted A. cervicornis colonies and highlights a need to refine restoration strategies to help restore their population along the Florida reef tract.  相似文献   

2.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

3.
4.
Coral reef species are frequently the focus of bio-prospecting, and when promising bioactive compounds are identified there is often a need for the development of responsible harvesting based on relatively limited data. The Caribbean gorgonian Pseudopterogorgia elisabethae has been harvested in the Bahamas for over a decade. Data on population age structure and growth rates in conjunction with harvest data provide an opportunity to compare fishery practices and outcomes to those suggested by a Beverton-Holt fishery model. The model suggests a minimum colony size limit of 7–9 years of age (21–28 cm height), which would allow each colony 2–4 years of reproduction prior to harvesting. The Beverton-Holt model assumes that colonies at or above the minimum size limit are completely removed. In the P. elisabethae fishery, colonies are partially clipped and can be repeatedly harvested. Linear growth of surviving colonies was up to 3 times that predicted for colonies that were not harvested and biomass increase was up to 9 times greater than that predicted for undisturbed colonies. The survival of harvested colonies and compensatory growth increases yield, and yields at sites that had previously been harvested were generally greater than predicted by the Beverton-Holt model. The model also assumes recruitment is independent of fishing intensity, but lower numbers of young colonies in the fished populations, compared to unfished populations, suggest possible negative effects of the harvest on reproduction. This suggests the need for longer intervals between harvests. Because it can be developed from data that can be collected at a single time, the Beverton-Holt model provides a rational starting point for regulating new fisheries where long-term characterizations of population dynamics are rarely available. However, an adaptive approach to the fishery requires the incorporation of reproductive data.  相似文献   

5.
Cronin AL  Fédérici P  Doums C  Monnin T 《Oecologia》2012,168(2):361-369
Organisms face a trade-off between investment in fewer, larger offspring, or more, smaller offspring. Most organisms can adjust investment through variation in the size and number of offspring in response to factors such as resource availability and competition. In some social animals, established colonies divide into groups of individuals that become autonomous, a process known as colony fission (also dependent colony foundation in social insects). Resource allocation under fission can be fine-tuned by adjusting the number of new groups (offspring number) and the number of individuals in each new group (offspring size). We assessed the influence of competition on resource allocation during fission in the ant Cataglyphis cursor, by allowing colonies to fission in experimental enclosures of high or low conspecific colony density. The pattern of colony fission was similar to that observed in the field: each fissioning colony produced a few new nests comprising a highly variable number of workers and a single queen, the old queen was often replaced, and new queens were produced in excess. The number of new nests produced depended on the available workforce in the parent colony but was not affected by differences in colony density. Comparison with data from fission under natural field conditions, however, indicates that colonies in enclosures produced fewer, larger new nests, suggesting that resource investment patterns during fission are indeed subject to extrinsic factors. The density of conspecific colonies in the immediate surroundings may be an unreliable estimate of competition intensity and other factors should be considered.  相似文献   

6.
Macroalgae are a major component of many coral reef flat communities, and are potentially major competitors with corals. The influence of macroalgae on several demographic parameters of four species of scleractinian coral by means of an algal clearance experiment was examined to determine specifically if macroalgae are affecting coral cover, growth, fecundity, fission, survivorship and recruitment. Also investigated were patterns of natural encounters between corals and algae.

Algal cover at the study site ranged from 41 to 56%, and coral cover from 8 to 10%. In total, 92 ± 4 ( )% of coral colonies were in contact with one or more species of macroalgae. Changes in coral cover were significantly affected by the presence of macroalgae, with cover of Acropora species increasing faster in areas from which algae had been cleared compared to control areas where algae had not been removed, although this pattern did not occur for Pocillopora damicornis (Linnaeus). Similarly, growth of individual colonies was faster when macroalgae were absent for three Acropora species but not for P. damicornis. There were no differences detected in rates of fission or survivorship of corals between algal clearance and control treatments, although there were high levels of variability in both of these parameters. Fecundity of Acropora palifera (Lamarck), the only species examined, was approximately double in colonies in cleared plots compared to those in control plots with macroalgae present. As no recruitment occurred throughout the 2-yr study, it remains to be determined how macroalgae effect the settlement of coral larvae. The results show that macroalgae can have a major influence on the demography of scleractinian corals.  相似文献   


7.
Bastidas  C.  Fabricius  K. E.  Willis  B. L. 《Hydrobiologia》2004,530(1-3):433-441
We evaluated the role that demography may play in the formation of local aggregations of Sinularia flexibilis (Quoy & Gaimard, 1833), a soft coral that commonly dominates inshore coral reefs of the Great Barrier Reef (GBR), Australia. Two populations on inshore reefs of the Palm Islands were censused once a year for 3 years, starting 10 mo after the extensive bleaching mortality in early 1998. Larger colonies became more prevalent over time; mean colony size increasing by 35%, from 276 cm2 in 1998 to 373 cm2 in 2000. Growth rates were size dependent, with smaller colonies growing proportionally faster than larger colonies. Change in size relative to initial size indicated an expected mean annual growth of 128 cm2 for a 50-cm2 colony. Zero growth was predicted at 532±21cm2, with colonies larger than this likely to undergo fission or shrink. Forty-three percent of colonies were undergoing fission at any time at both localities. Most new colonies were produced by fission (70%, n=285), with the remainder produced by the recruitment of sexually produced larvae (19%) or by colony translocation (11%). The sexual and asexual recruitment rates were 0.24 and 1.0 recruits m- 2 year−1, respectively. Opportunistic recruitment and rapid growth following disturbances are commonly assumed to be the mechanisms leading soft corals to dominate locally. In this study, these mechanisms operated more slowly than expected, with no net change in population size.  相似文献   

8.
Although most physiological traits scale allometrically in unitary organisms, it has been hypothesized that modularity allows for isometric scaling in colonial modular taxa. Isometry would allow increases in size without functional constraints, and is thought to be of central importance to the success of a modular design. Yet, despite its potential importance, scaling in these organisms has received little attention. To determine whether scleractinian corals are free of allometric constraints, we quantified metabolic scaling, measured as aerobic respiration, in small colonies (< or =40 mm in diam.) of the scleractinian Siderastrea siderea. We also quantified the scaling of colony surface area with biomass, since the proposed isometry is contingent upon maintaining a constant ratio of surface area to biomass (or volume) with size. Contrary to the predicted isometry, aerobic respiration scaled allometrically on biomass with a slope (b) of 0.176, and colony surface area scaled allometrically on biomass with a slope of 0.730. These findings indicate that small colonies of S. siderea have disproportionately high metabolic rates and SA:B ratios compared to their larger counterparts. The most probable explanations for the allometric scaling of aerobic respiration are (1) a decline in the SA:B ratio with size such that more surface area is available per unit of biomass for mass transfer in the smallest colonies, and (2) the small size, young age, and disproportionately high growth rates of the corals examined. This allometric scaling also demonstrates that modularity, alone, does not allow small colonies of S. siderea to overcome allometric constraints. Further studies are required to determine whether allometric scaling is characteristic of the full size range of colonies of S. siderea.  相似文献   

9.
Sexual propagation of corals specifically for reef rehabilitation remains largely experimental. In this study, we refined low technology culture and transplantation approaches and assessed the role of colony size and age, at time of transfer from nursery to reef, on subsequent survival. Larvae from Acropora millepora were reared from gametes and settled on engineered substrates, called coral plug-ins, that were designed to simplify transplantation to areas of degraded reef. Plug-ins, with laboratory spawned and settled coral recruits attached, were maintained in nurseries until they were at least 7 months old before being transplanted to replicate coral limestone outcrops within a marine protected area until they were 31 months old. Survival rates of transplanted corals that remained at the protected in situ nursery the longest were 3.9–5.6 times higher than corals transplanted to the reef earlier, demonstrating that an intermediate ocean nursery stage is critical in the sexual propagation of corals for reef rehabilitation. 3 years post-settlement, colonies were reproductively mature, making this one of few published studies to date to rear a broadcasting scleractinian from eggs to spawning adults. While our data show that it is technically feasible to transplant sexually propagated corals and rear them until maturity, producing a single 2.5-year-old coral on the reef cost at least US$60. ‘What if’ scenarios indicate that the cost per transplantable coral could be reduced by almost 80 %, nevertheless, it is likely that the high cost per coral using sexual propagation methods would constrain delivery of new corals to relatively small scales in many countries with coral reefs.  相似文献   

10.
Periodic colony fision has been characteristic ofHutterite society for more than 100 years. From 1878–1970 fission occurred an average of every 14–15 years when colonies attained a size of 166 persons. Emigrating groups were comprised of35%–55% of the mother colony's population. Between founding and fission, daughter populations grew at an average rate of 4.3% per year. Over time, fissioning size and length of fission cycles decreased, but the size of new daughter colonies and rate of population growth remained constant through 1960. Demographic analysis suggested that the model of fission followed by the Hutterites has not always focused on even division of the mother colony into two equal-sized groups, but rather that they have had a fairly constant conceptual model of the size that new colonies should be. As fissioning size decreased over time the proportionate size of new colonies increased, maintaining the absolute size nearly constant since 1900. These findings suggest a number of questions for further investigation.  相似文献   

11.
Winged queens are the most common reproductives in ants. They are morphologically specialized for independent colony foundation, with wings for long-range dispersal and metabolic reserves to raise the first brood. However independent foundation can sometimes be selected against and replaced by fission, featuring short-range dispersal on the ground and reproductives that are dependent on the wingless workers for all non-reproductive tasks. We investigated the evolutionary consequences of this transition on the morphology of the reproductives by collecting 30 colonies of Odontomachus coquereli from Madagascar, the only species in the genus where winged queens have never been found. Data about colony demography, morphometry, allometry and ovarian dissections showed that the winged queen caste has been replaced by a wingless reproductive caste with distinct body proportions relative to the workers or to congeneric winged queens. The 17 reproductives that we measured exhibited little size variability. A single wingless reproductive was found in each colony, corresponding to ‘ergatoids’ in literature. Several facts suggest that colonies reproduce by fission, notably the relatively constant colony size (19±11 workers). The developmental origins of wingless reproductive phenotypes need investigation; little genetic change may be involved, as seen when Odontomachus larvae are parasitized by nematodes. The sole function of wingless reproductives in O. coquereli is reproduction, and they contrast with multi-purpose wingless reproductives found in other ants, where numerous intermorphs occur in each colony and contribute to sterile tasks. Received 15 December 2006; revised 26 February 2007; accepted 1 March 2007.  相似文献   

12.
Massive coral bleaching events associated with high sea surface temperatures are forecast to become more frequent and severe in the future due to climate change. Monitoring colony recovery from bleaching disturbances over multiyear time frames is important for improving predictions of future coral community changes. However, there are currently few multiyear studies describing long‐term outcomes for coral colonies following acute bleaching events. We recorded colony pigmentation and size for bleached and unbleached groups of co‐located conspecifics of three major reef‐building scleractinian corals (Orbicella franksi, Siderastrea siderea, and Stephanocoenia michelini; n = 198 total) in Bocas del Toro, Panama, during the major 2005 bleaching event and then monitored pigmentation status and changes live tissue colony size for 8 years (2005–2013). Corals that were bleached in 2005 demonstrated markedly different response trajectories compared to unbleached colony groups, with extensive live tissue loss for bleached corals of all species following bleaching, with mean live tissue losses per colony 9 months postbleaching of 26.2% (±5.4 SE) for O. franksi, 35.7% (±4.7 SE) for S. michelini, and 11.2% (±3.9 SE) for S. siderea. Two species, O. franksi and S. michelini, later recovered to net positive growth, which continued until a second thermal stress event in 2010. Following this event, all species again lost tissue, with previously unbleached colony species groups experiencing greater declines than conspecific sample groups, which were previously bleached, indicating a possible positive acclimative response. However, despite this beneficial effect for previously bleached corals, all groups experienced substantial net tissue loss between 2005 and 2013, indicating that many important Caribbean reef‐building corals will likely suffer continued tissue loss and may be unable to maintain current benthic coverage when faced with future thermal stress forecast for the region, even with potential benefits from bleaching‐related acclimation.  相似文献   

13.
 A small-scale, “no-use zone policy” has been implemented since 1992 at Eilat’s Coral Nature Reserve (Northern Red Sea). Six years later, the status of this closed-to-the-public reef area was compared to two nearby open-to-the-public sites, by evaluating populations of the scleractinian coral Stylophora pistillata in the strolling zone (0.5–1.5 m depth). Results from the open sites show that: (1) Live coral cover was three times lower than at the closed site; (2) numbers of small colonies (recruits) were significantly higher than in the closed site, while numbers of medium and large size colonies (geometric mean radius, >4.1 cm) per m2 were significantly lower; (3) maximum was almost half than that in the closed site (9.6 cm versus 16.7 cm); (4) average number of broken colonies was three times higher than in the closed site; (5) significantly fewer colonies were partially dead. The latter result may reflect senescence processes in the large colonies of the closed site. Although colony breakage is reduced, it appears that the “no-use zone” policy is not sufficient for protecting small reef areas. The intense exploitation of Eilat’s coral reef by the tourist industry requires’ in addition to the conventional protective measures, the initiation of novel management solutions such as reef restoration by sexual and asexual recruits. Accepted: 11 August 1999  相似文献   

14.
Colony development of the dimorphic yeasts Yarrowia lipolytica and Candida boidinii on solid agar substrates under glucose limitation served as a model system for mycelial development of higher filamentous fungi. Strong differences were observed in the behaviour of both yeasts: C. boidinii colonies reached a final colony extension which was small compared to the size of the growth field. They formed cell-density profiles which steeply declined along the colony radius and no biomass decay processes could be detected. The stop of colony extension coincided with the depletion of glucose from the growth substrate. These findings supported the hypothesis that glucose-limited C. boidinii colonies can be regarded as populations of single cells which grow according to a diffusion-limited growth mechanism. Y. lipolytica colonies continued to extend after the depletion of the primary nutrient resource, glucose, until the populations covered the entire growth field which was accomplished by utilization of mycelial biomass.  相似文献   

15.
Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts (Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to colony-level phenotypes, such as thermotolerance, symbiont genotypes might also contribute to the resistance or susceptibility of coral colonies to disease. To explore this, Symbiodinium were identified using the internal transcribed spacer-2 region of ribosomal DNA from diseased and healthy tissues within individual coral colonies infected with black band disease (BB), dark spot syndrome (DSS), white plague disease (WP), or yellow blotch disease (YB) in the Florida Keys (USA) and the US Virgin Islands. Most of the diseased colonies sampled contained B1, B5a, or C1 (depending on host species), while apparently healthy colonies of the same coral species frequently hosted these types and/or additional symbiont diversity. No potentially “parasitic” Symbiodinium types, uniquely associated with diseased coral tissue, were detected. Within most individual colonies, the same dominant Symbiodinium type was detected in diseased and visually healthy tissues. These data indicate that specific Symbiodinium types are not correlated with the infected tissues of diseased colonies and that DSS and WP onset do not trigger symbiont shuffling within infected tissues. However, few diseased colonies contained clade D symbionts suggesting a negative correlation between hosting Symbiodinium clade D and disease incidence in scleractinian corals. Understanding the influence of Symbiodinium diversity on colony phenotypes may play a critical role in predicting disease resistance and susceptibility in scleractinian corals.  相似文献   

16.
The high-latitude coral species Plesiastrea versipora was investigated to identify growth rates in colonies over 1 m in diameter. Six colonies from two temperate gulfs (latitudes of 33°–35°S) in Southern Australia were examined using X-ray, luminescence and 238U/230Th dating techniques. Annual density bands were present in each coral but varied in width and definition, suggesting different linear extension and calcification rates. Differences in density band width were observed at the local scale (amongst colonies on the same reef) and regional scales (between the two gulfs). Extension rates of the P. versipora colonies examined in this study varied between 1.2 and 7 mm per year, which are amongst the slowest growth rates reported for hermatypic corals. As only one of the six P. versipora colonies had obvious luminescent banding, we conclude that luminescent banding is not an accurate chronological marker in this species of temperate water coral. Coral age estimates derived from counting density bands in X-radiographs ranged from 90 to 320 years for the six colonies studied. U-Th ages from the same colonies determined by high-precision multi-collector inductively coupled plasma mass spectrometer established radiometric ages between 105 and 381 years. The chronological variation in absolute ages between the two techniques varied between 2 and 19% in different colonies, with the lowest growth rates (~1 mm) displaying the greatest variation between density band age and radiometric U-Th age. This result implies that the age of P. versipora and other slow-growing corals cannot be determined accurately from density bands alone. The outcome of this research demonstrates that P. versipora may be useful as a paleoclimate archive, recording several centuries in a single colony in high-latitude environments (corals found in latitudes greater than 30° in either hemisphere), where other well-established coral climate archives, such as Porites, do not occur.  相似文献   

17.
1. Some lepidopteran species have larvae that live gregariously, especially in early instars. Colony‐living species may benefit from improved protection from predators, thermoregulation, and feeding facilitation, for example. 2. While many studies have compared solitary and gregarious life styles, few data exist as to the relationship between size of the larval colony and larval performance in gregarious species. The present study was aimed at understanding the importance of colony size for growth and survival of the northern pine processionary moth (Thaumetopoea pinivora) larvae. 3. Field studies, comparing three different sizes of colonies of T. pinivora larvae, showed that individuals in larger colonies had a higher survival rate compared with those living in smaller colonies and also a faster growth rate. 4. The higher survival rate of large colonies was attributed to improved protection from predacious arthropods. 5. In early spring, the young larvae bask in the sun to increase their body temperature. In field experiments the thermal gain was higher in large colonies, and individuals in such colonies also grew faster. As growth rate was not affected by colony size when the ability to bask was experimentally removed in a laboratory experiment, the higher growth rate of the larger colonies was probably due to improved thermoregulation rather than feeding facilitation. 6. The size of larval colonies of gregarious insects depends on natural mortality events as well as on female oviposition strategy. Our results show that decreasing colony size can lead to a reduction in growth rate and survival. It is therefore important to understand whether or not small colonies will benefit equally from the gregarious behaviour.  相似文献   

18.
In recent years, a few colonial marine invertebrates have shown intracolonial genetic variability, a previously unreported phenomenon. Intracolonial genetic variability describes the occurrence of more than a single genotype within an individual colony. This variability can be traced back to two underlying processes: chimerism and mosaicism. Chimerism is the fusion of two or more individuals, whereas mosaicism mostly derives from somatic cell mutations. Until now, it remained unclear to what degree the ecologically important group of hermatypic (reef building) corals might be affected. We investigate the occurrence of intracolonial genetic variability in five scleractinian corals: Acropora florida, Acropora hyacinthus, Acropora sarmentosa, Pocillopora species complex and Porites australiensis. The main focus was to test different genera for the phenomenon via microsatellite markers and to distinguish which underlying process caused the genetic heterogeneity. Our results show that intracolonial genetic variability was common (between 46.6% for A. sarmentosa and 23.8% for P. species complex) in all tested corals. The main process was mosaicism (69 cases of 222 tested colonies), but at least one chimera existed in every species. This suggests that intracolonial genetic variability is widespread in scleractinian corals and could challenge the view of a coral colony as an individual and therefore a unit of selection. However, it might also hold potential for colony survival under rapidly changing environmental conditions.  相似文献   

19.
Summary In clonal plants exposed to pollution, ramets which are physiologically integrated may be less fit than ramets which are independent, if (a) translocation of toxins from contaminated ramets produced toxicity, or (b) toxicity in parent ramets reduced the degree of nutritional support to otherwise non-exposed daughters. These hypotheses were tested in the aquatic fern Salvinia molesta exposed to cadmium. Pre-treatment of parent ramets with cadmium decreased the number and biomass of daughters subsequently produced in a cadmiumfree medium, because of reduced parental support of the first daughter generation. Second generation and later daughters were unaffected. Pre-treatment did not affect the pattern of integration (which, in terms of apical daughters' biomass, was bimodal with increasing colony size), or concentrations of essential elements in new growth. However, a diversion of resources from lateral to apical daughters occurred as a result of pre-treatment, especially in colonies with 3 attached parents. Loss/gain analysis showed that the diversion was almost reciprocal in terms of biomass, ramet numbers and phosphorus content. Integration between contaminated and uncontaminated ramets was not disadvantageous to the clone as a whole. However, integration was disadvantageous for Ca, Mg and Zn concentrations in daughters, which declined 15–22%. Because of enhanced apical growth, an indirect benefit of integration may be a more rapid fragmentation and dispersal of daughters from the site of contamination than if the parents were independent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号