首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
When Y-1 mouse adrenal tumor cells were treated with sodium orthovanadate, an agent disrupting BHK21-F cell microtubule-intermediate filament (IF) interactions, there was no change in the amount of 20-dihydroprogesterone produced. A neurofilament-microtubule perturbing agent, beta,beta-iminodipropionitrile (IDPN), enhanced the ability of Y-l cells to produce steroid in response to ACTH by acting on the plasma membrane. Electron microscopy of Y-l cells extracted with Triton X-100 revealed that both vanadate and IDPN caused the aggregation of granular structures in the perinuclear area. Based on the steroidogenic effects of IDPN, perinuclear granule aggregation may result from an altered interaction between intermediate filaments, microtubules and the plasma membrane. The reason for the ultrastructural changes caused by vanadate is unknown.  相似文献   

3.
Cultured Y-1 mouse adrenal tumor cells treated with ACTH (0.5 U/ml) rounded, formed filopodia and numerous thin microvilli, and produced steroids. Rounding, filopodia and bleb formation occurred for trypsin (0.01%), and hyaluronidase (0.1%), treated cells; but neither affected control or ACTH-stimulated steroidogenesis. Neuraminidase treatment (20 mU/ml) caused rounding, thin microvilli, bleb formation, slightly increased steroid production and prevented subsequent ACTH effects. Neuraminidase appeared to alter a carbohydrate-containing ACTH receptor preventing ACTH binding. We conclude rounding and steroidogenesis are not always associated.  相似文献   

4.
The stimulation of steroidogenesis by antimitotic drugs has been studied in wild-type (Y-1) and cAMP-dependent protein kinase-deficient (kin-8) mouse adrenal tumor cell lines. Unlike some other cells, Y-1 cells do not increase their cAMP output upon exposure to antimitotic drugs such as colchicine, vinblastine or podophyllotoxin, which readily increase steroidogenesis. Moreover, no increase in cAMP can be detected over an extended time span. Stabilization of tubulin polymers by taxol or high concentrations of vinblastine blocks ACTH-, cholera toxin- or colchicine-stimulated steroidogenesis without major effects on cAMP levels. Colchicine and podophyllotoxin stimulate steroidogenesis in the cAMP-dependent protein kinase-deficient mutant to the same degree as in the wild-type Y-1 cells, although absolute steroid yields are lower in the mutant cells. We suggest that the antimitotic agents stimulate adrenal steroidogenesis by a cAMP-independent pathway that may involve facilitation of cholesterol access to the mitochondrion.  相似文献   

5.
6.
Adrenal cells from control rabbits (control-cells) and from rabbits that had been injected twice daily for 3 days prior to sacrifice with 25 IU ACTH (ACTH-cells) were cultured both in the absence and presence of 100 mIU ACTH. Culture durations varied from 24 to 120 h in 24 h increments. The culture medium was changed daily and fresh ACTH added to appropriate vessels. At the time of the final media change 0.1 muCi [4-14C]pregnenolone was added. Twenty-four hours later the cultures were terminated and the products formed from the pregnenolone were isolated, quantified and identified by solvent extraction, chromatography and crystallization to constant specific activity. After 72 h ACTH-cells cultured in the presence of ACTH converted 18.5% of the pregnenolone substrate to 17-hydroxycorticosteroids (cortisol plus 11-deoxycortisol) while ACTH-cells cultured in the absence of ACTH converted a maximum of 1.6%. A similar but smaller difference, 10.9 vs 2.1%, was recorded with control cells cultured in the presence and absence of ACTH. Corticosterone production from [4-14C]pregnenolone in the 72-h cultures was increased to a lesser degree by ACTH exposure. In ACTH-cells the conversion climbed from 5.9 to 10.5% and from 9.6 to 12.0% in control cells. Microscopic examination of parallel cultures showed no significant differences in cell density between cells cultured in the presence or absence of ACTH. 17 alpha-Hydroxylase activity arising from the in vivo stimulation did not survive cell division in culture, but required the continual presence of ACTH. In conclusion, the data show that ACTH is capable of stimulating 17-hydroxycorticoid formation in rabbit adrenal cell cultures.  相似文献   

7.
The plant lectins, concanavalin A (conA), wheat germ agglutinin (WGA), and phytohemagglutinin (PHA) stimulate steroidogenesis in cultured adrenal tumor cells. ConA maximally stimulated steroidogenesis at 100 μg/ml following an approximate 4 h lag phase. ConA stimulation was completely inhibited by α-methyl-d-mannopyranoside and the WGA effect was prevented by N-acetyl-d-glucosamine. It was also found that conA alone did not cause a measurable increase in either intra- or extracellular cyclic adenosine 3′5′-monophosphate (cAMP) production. In addition, conA when added simultaneously with adrenocorticotropin (ACTH) doubled the intra- and extracellular cAMP production over controls treated with ACTH alone. This enhancement effect was dose dependent. When Y-1 cells were preincubated with conA and then treated with either ACTH or cholera enterotoxin (CT) there was a dose- and time-dependent inhibition of induced cAMP production. In the case of CT, the inhibitory effect occurred even with simultaneous addition of conA and CT. This effect was reversed by addition of both α-methyl-d-mannopyranoside and washing with Eagle's minimal essential medium (MEM) 1 h after CT had bound to its receptor. This reversal was not apparent for the inhibitory effect of conA on ACTH-induced cAMP production which occurred after 2 h of preincubation with conA. These results demonstrate that conA, as well as the other plant lectins, interact with specific membrane receptors to reversibly stimulate steroid production as well as enhancing or inhibiting ligand-induced cAMP production in cultured adrenal tumor cells.  相似文献   

8.
Lipopolysaccharides (endotoxins) from Escherichia coli, Serratia marcescens and Salmonella typhosa stimulated steroid production in Y-1 adrenal tumor cells in culture with a latent period of 3–4 h. Lipid A, derived from Escherichia coli lipopolysaccharide, also stimulated steroidogenesis. Lipopolysaccharides and lipid A also stimulate adenylate cyclase activity and cause rounding of the cells. In contrast, lipopolysaccharides do not stimulate steroidogenesis in receptor-deficient adrenal tumor cells (OS-3) or Leydig tumor cells (I-10). This tends to rule out contamination by enterotoxin to which these lines respond. Although both hormone and lipopolysaccharide responses are lost in these lines, there was no interaction between these sites as judged by the failure of lipopolysaccharides to block, during their latency, the response to corticotropin in Y-1 cells. The possibility that the lipopolysaccharide effect is one on membrane conformation is discussed.  相似文献   

9.
Liu MY  Lai HY  Yang BC  Tsai ML  Yang HY  Huang BM 《Life sciences》2001,68(8):849-859
Lead is an environmental and occupational pollutant. It has been reported that lead affects the male reproductive system in humans and animals. However, the cellular mechanism of the adverse effect of lead on Leydig cell steroidogenesis remains unknown. To clarify whether lead has a direct effect on Leydig cells and how lead affects Leydig cells, MA-10 cells, a mouse Leydig tumor cell line, were exploited in this study. Lead acetate significantly inhibited hCG- and dbcAMP-stimulated progesterone production in MA-10 cells at 2 h. Steroid production stimulated by hCG or dbcAMP were reduced by lead. The mechanism of lead in reducing MA-10 cell steroidogenesis was further investigated. The expression of Steroidogenic Acute Regulatory (StAR) protein and the activities of P450 side-chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzymes were detected. Cells were treated with dbcAMP, 22R-hydroxycholesterol or pregnenolone alone or in combination with lead acetate ranging from 10(-8) to 10(-5) M for 2 h. The expression of StAR protein stimulated by dbcAMP was suppressed by lead at about 50%. Progesterone productions treated with 22R-hydroxycholesterol or pregnenolone were reduced 30-40% in lead-treated MA-10 cells. These data suggest that lead directly inhibited steroidogenesis by decreasing StAR protein expression and the activities of P450scc and 3beta-HSD enzymes with a dose-response trend in MA-10 cells. Moreover, cadmium, a calcium channel blocker, abolished inhibitory effect of lead on MA-10 cell steroid production. This indicates that lead might act on calcium channel to regulate MA-10 cell steroidogenesis.  相似文献   

10.
Steroid hormones are synthesized using cholesterol as precursor. To determine the functional importance of the low density lipoprotein (LDL) receptor and hormone-sensitive lipase (HSL) in adrenal steroidogenesis, adrenal cells were isolated from control, HSL(-/-), LDLR(-/-), and double LDLR/HSL(-/-) mice. The endocytic and selective uptake of apolipoprotein E-free human high density lipoprotein (HDL)-derived cholesteryl esters did not differ among the mice, with selective uptake accounting for >97% of uptake. In contrast, endocytic uptake of either human LDL- or rat HDL-derived cholesteryl esters was reduced 80-85% in LDLR(-/-) and double-LDLR/HSL(-/-) mice. There were no differences in the selective uptake of either human LDL- or rat HDL-derived cholesteryl esters among the mice. Maximum corticosterone production induced by ACTH or dibutyryl cyclic AMP and lipoproteins was not altered in LDLR(-/-) mice but was reduced 80-90% in HSL(-/-) mice. Maximum corticosterone production was identical in HSL(-/-) and double-LDLR/HSL(-/-) mice. These findings suggest that, although the LDL receptor is responsible for endocytic delivery of cholesteryl esters from LDL and rat HDL to mouse adrenal cells, it appears to play a negligible role in the delivery of cholesterol for acute adrenal steroidogenesis in the mouse. In contrast, HSL occupies a vital role in adrenal steroidogenesis because of its link to utilization of selectively delivered cholesteryl esters from lipoproteins.  相似文献   

11.
We have used microspectrofluorometry and video imaging techniques in order to study and compare the changes in intracellular calcium concentrations [( Ca2+]i) of individual Fura-2 loaded glomerulosa cells cultured for three days and stimulated either with angiotensin II (AT), K+, or adrenocorticotropin (ACTH). As previously demonstrated for freshly isolated cells, K+ ion induces an immediate increase in [Ca2+]i, although AT induces a biphasic response, characterized by an initial transient spike, followed by a sustained plateau. In this study, we demonstrate, for the first time, that ACTH is able to induce a [Ca2+]i increase in cultured glomerulosa cells from rat and bovine sources. Moreover, it is clear that the pattern of [Ca2+]i increase elicited by ACTH is different from that observed with AT. In most cases, addition of ACTH leads to a slow increase in [Ca2+]i after a long latency period ranging from 10-15 min, which could be correlated to cAMP time-production. The present results show that: (a) in the absence of extracellular Ca2+, ACTH does not increase [Ca2+]i; (b) the response develops slowly and cases immediately after [Ca2+]e depletion or addition of calcium channel blockers, such as nifedipine or omega-conotoxin; (c) the addition of the calcium channel agonist Bay K 8644 enhances the ACTH response; (d) the cAMP analog, 8-Br-cAMP, induces an increase in [Ca2+]i similar to that observed with ACTH, which is also dependent of the presence of calcium in the extracellular medium; (e) time-production of ACTH-induced cAMP follows quite well the increase in [Ca2+]i; (f) Bay K 8644 also enhances the 8-Br-cAMP induced increase in [Ca2+]i; and (g) ACTH-induced Cai response is inhibited by the specific protein kinase A blocker, HA1004. These observations, combined with previous results obtained on the effects of ACTH on calcium currents and action potentials, suggest that the [Ca2+]i increase induced by ACTH results from a calcium influx through dihydropyridine and omega-conotoxin sensitive calcium channels, which need to be phosphorylated by cAMP for full activation. The use of video-imaging techniques has allowed us to examine the spatial distribution of changes in [Ca2+]i in single cells. The ability to simultaneously record images of a number of cells confirm the heterogeneity of cellular responses, and corroborate results obtained through photocounting only. Our results indicate that ACTH initially increases [Ca2+]i locally beneath the cell membrane and throughout the cell thereafter, whereas angiotensin II elicits a more prominent effect in certain regions of the cell and eventually extends to the entire cell surface.  相似文献   

12.
Chen LY  Huang YL  Liu MY  Leu SF  Huang BM 《Life sciences》2003,72(17):1983-1995
Amphetamine influences plasma and testicular testosterone levels. However, there is no evidence that amphetamine can directly influence Leydig cell functions. In the present study, a MA-10 mouse Leydig tumor cell line was used to determine whether and how amphetamine affected Leydig cell steroidogenesis. MA-10 cells were treated with different concentrations of amphetamine without or with human chorionic gonadotropin (hCG) and/or enzyme precursors over different time durations. Steroid production, enzyme activities and StAR protein expression were determined. Amphetamine alone had no any effect on MA-10 cell steroidogenesis. However, amphetamine (10(-11)M and 10(-10)M) significantly enhanced hCG-treated progesterone production at 3 hr in MA-10 cells (p < 0.05). Furthermore, amphetamine significantly induced more progesterone production upon treatment with 22R-hydroxycholesterol (p < 0.05), a precursor of P450 side-chain cleavage enzyme (P450scc). However, amphetamine did not induce more progesterone production when treated with pregnenolone (p > 0.05), a precursor of 3beta-hydroxysteroid dehydrogenase. In addition, the expressions of StAR protein and P450scc enzyme were not significantly different between hCG alone and hCG plus amphetamine treatment in MA-10 cells (p > 0.05). These results suggested that amphetamine enhanced hCG-induced progesterone production in MA-10 cells by increasing P450scc activity without influencing StAR protein and P450scc enzyme expression or 3beta-HSD enzyme activity.  相似文献   

13.
14.
Lipopolysaccharides (endotoxins) from Escherichia coli, Serratia marcesens and Salmonella typhosa stimulated steroid production in Y-1 adrenal tumor cells in culture with a latent period of 3-4 h. Lipid A, derived from Escherichia coli lipopolysaccharide, also stimulated steroidogenesis. Lipopolysaccharides and lipid A also stimulate adenylate cyclase activity and cause rounding of the cells. In contrast, lipopolysaccharides do not stimulate steroidogenesis in receptor-deficient adrenal tumor cells (OS-3) or Leydig tumor cells (I-10). This tends to rule out contamination by enterotoxin to which these lines respond. Although both hormone and lipopolysaccharide responses are lost in these lines, there was no interaction between these sites as judged by the failure of lipopolysaccharides to block, during their latency, the response to corticotropin in Y-1 cells. The possibility that the lipopolysaccharide effect is one on membrane conformation is discussed.  相似文献   

15.
Tremella mesenterica (TM), a yellow jelly mushroom, has been traditionally used as tonic food to improve body condition in Chinese society for a long time. We have previously demonstrated that TM reduced in vitro hCG-treated steroidogenesis in MA-10 mouse Leydig tumor cells without any toxicity effect. In the present study, the mechanism how TM suppressed hCG-treated steroidogenesis in MA-10 cells was investigated. MA-10 cells were treated with vehicle, human chorionic gonadotropin (hCG, 50 ng/ml), or different reagents with or without TM to clarify the effects. TM significantly suppressed progesterone production with the presences of forskolin (10 and 100 microM) or dbcAMP (0.5 and 1mM), respectively, in MA-10 cells (p<0.05), which indicated that TM suppressed steroidogenesis after PKA activation along the signal pathway. Beyond our expectation, TM induced the expression of steroidogenic acute regulatory (StAR) protein with or without hCG treatments. However, TM profoundly decreased P450 side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) enzyme activities without any influences on the expression of both enzymes. These inhibitions on steroidogenic enzyme activities might counteract the stimulation of StAR protein expression. In conclusion, results suggest that TM suppressed hCG-treated steroidogenesis in MA-10 cells by inhibiting PKA signal pathway and steroidogenic enzyme activities.  相似文献   

16.
The effect of endotoxin (lipopolysaccharide from E. coli) on isolated adrenocortical cells was examined. Lipopolysaccharide decreased the ACTH-induced steroidogenesis. This effect was shown by all corticotropin concentrations studied, and the longer the incubation time, the higher the effect produced. The rate of decrease of ACTH-induced steroidogenesis was dependent on the concentration of lipopolysaccharide in the medium. Binding of [125I]ACTH to adrenocortical cells was modified by lipopolysaccharide; this modification was related to a decrease of the ACTH-induced steroidogenesis. This effect supports the hypothesis of a direct interaction between lipopolysaccharide and the cell membrane with a concomitant distortion of the cell surface affecting the ACTH receptor sites of their environment. [14C]Lipopolysaccharide binds to isolated adrenocortical cells. Binding specificity was investigated by competitive experiments in the presence of various types of endotoxins, polypeptide hormones and proteins. Unlabelled lipopolysaccharide from the same bacterial strain and isolated under identical conditions than the labelled lipopolysaccharide exerted the strongest inhibitory activity. Unlabelled lipopolysaccharide of various strains different from that originating the labelled lipopolysaccharide exerted the less displacement. It would imply a certain kind of specificity but the decrease in the binding of lipopolysaccharide produced by ACTH and glucagon suggests the existence of non-specific interactions between lipopolysaccharide and cell membrane.  相似文献   

17.
18.
Initial studies of adrenocorticotropin-sensitive (ACTH-sensitive) and ACTH-insensitive Y-1 adrenal cortical tumor cell lines suggest a relationship between responsiveness to ACTH and the presence of gap junctions. An ACTH-sensitive clone of Y-1 cells possesses gap junctions and these junctions appear to enlarge with ACTH treatment. Gap junctions have not been observed, however, in an ACTH-insensitive clone of Y-1 tumor cells even when stimulated to produce cyclic adenosine monophosphate and steroids with cholera toxin.  相似文献   

19.
R Klepac 《Endokrinologie》1981,77(2):192-196
Pregnant female rats with ACTH secreting tumor (MtTF4) have prolonged pregnancy and cannot deliver. The fetuses of tumor bearing females have in prolonged pregnancy on days 24 and 25 of pregnancy greater body weight and smaller adrenal weight as compared to intact fetuses of the 22nd day of pregnancy. The fetal adrenal glands converted to vitro 4-14C progesterone to radioactive 11-deoxycorticosterone (DOC), corticosterone (B), 18-hydroxy-11-deoxycorticosterone (18-OH-DOC), 18-hydroxy-corticosterone (18-OH-B) and aldosterone. Fetal adrenal glands in prolonged pregnancy synthetized in vitro less amount of radioactive DOC, B and 18-OH-DOC. A negative relationship exists between the maternal corticosterone which passes the placenta to fetuses and corticosteroidogenesis of fetal adrenal glands. These results indicate the possibility that fetal rat adrenal glands with their corticosteroids participate in pregnancy and influence normal delivery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号