首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A one-dimensional hydrodynamic model of the atom, ion, and electron dynamics in the channel of a stationary plasma thruster is developed. The relevant set of integrodifferential equations is derived and investigated both analytically (steady-state solutions) and numerically (dynamic regimes). It is shown that adjusting only one parameter (the channel resistivity) makes it possible to achieve a good agreement between the calculated global parameters and experimental data. The general features of oscillations revealed with the help of the model are also found to agree fairly well with the experiment.  相似文献   

2.
We report results of numerical simulations of complex fluids, using a combination of discrete-particle methods. Our molecular modeling repertoire comprises three simulation techniques: molecular dynamics (MD), dissipative particle dynamics (DPD), and the fluid particle model (FPM). This type of model can depict multi-resolution molecular structures (see the Figure) found in complex fluids ranging from single micelle, colloidal crystals, large-scale colloidal aggregates up to the mesoscale processes of hydrodynamical instabilities in the bulk of colloidal suspensions. We can simulate different colloidal structures in which the colloidal beds are of comparable size to the solvent particles. This undertaking is accomplished with a two-level discrete particle model consisting of the MD paradigm with a Lennard-Jones (L-J) type potential for defining the colloidal particle system and DPD or FPM for modeling the solvent. We observe the spontaneous emergence of spherical or rod-like micelles and their crystallization in stable hexagonal or worm-like structures, respectively. The ordered arrays obtained by using the particle model are similar to the 2D colloidal crystals observed in laboratory experiments. The micelle shape and its hydrophobic or hydrophilic character depend on the ratio between the scaling factors of the interactions between colloid–colloid to colloid–solvent. Unlike the miscellar arrays, the colloidal aggregates involve the colloid–solvent interactions prescribed by the DPD forces. Different from the assumption of equilibrium growth, the two-level particle model can display much more realistic molecular physics, which allows for the simulation of aggregation for various types of colloids and solvent liquids over a very broad range of conditions. We discuss the potential prospects of combining MD, DPD, and FPM techniques in a single three-level model. Finally, we present results from large-scale simulation of the Rayleigh–Taylor instability and dispersion of colloidal slab in 2D and 3D. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00894-001-0068-3.Electronic Supplementary Material available.  相似文献   

3.
Dissipative particle dynamics (DPD) was carried out to study systems containing gold atoms, organic ether (oligohydroquinonyl ether terminated with a thiol group) and organic solvents. The components in the simulated system are very different in size and chemical nature. Our simulation showed that the reproduction of the macroscopic experimental phase separation, properly dividing the polymeric molecule into beads, selecting the size of gold bead, and choosing the appropriate interaction parameters between beads are crucial. In addition, the solvent effect was the dominant factor for the formation of spherical aggregates of Au atoms and organic ether molecules. We report the interaction strengths between the solvent and gold clusters. Our work has demonstrated that DPD methods can be applied to the study of complex meso-scale systems.  相似文献   

4.
A study is made of the dynamics of particles interacting with electromagnetic field fluctuations in a plasma in the presence of a magnetic field. Possible mechanisms for the onset of anomalous transport and its suppression by applying a radial electrostatic field are analyzed. Estimates of the diffusion coefficient are proposed based on the calculations of particle trajectories.  相似文献   

5.
Artificial membranes mimicking biological structures are rapidly breaking new ground in the areas of medicine and soft-matter physics. In this endeavor, we use dissipative particle dynamics simulation to investigate the morphology and behavior of lipid-based biomembranes under conditions of varied lipid density and self-interaction. Our results show that a less-than-normal initial lipid density does not create the traditional membrane; but instead results in the formation of a ‘net’, or at very low densities, a series of disparate ‘clumps’ similar to the micelles formed by lipids in nature. When the initial lipid density is high, a membrane forms, but due to the large number of lipids, the naturally formed membrane would be larger than the simulation box, leading to ‘rippling’ behavior as the excess repulsive force of the membrane interior overcomes the bending energy of the membrane. Once the density reaches a certain point however, ‘bubbles’ appear inside the membrane, reducing the rippling behavior and eventually generating a relatively flat, but thick, structure with micelles of water inside the membrane itself. Our simulations also demonstrate that the interaction parameter between individual lipids plays a significant role in the formation and behavior of lipid membrane assemblies, creating similar structures as the initial lipid density distribution. This work provides a comprehensive approach to the intricacies of lipid membranes, and offers a guideline to design biological or polymeric membranes through self-assembly processes as well as develop novel cellular manipulation and destruction techniques.  相似文献   

6.
Pf1 virus particle dynamics   总被引:1,自引:0,他引:1  
P Tsang  S J Opella 《Biopolymers》1986,25(10):1859-1864
The overall dynamics of the Pf1 filamentous bacteriophage particle in solution are characterized by nmr experiments. The chemical-shift anisotropy powder-pattern lineshapes from both DNA and protein backbone sites of the virus are motionally averaged in the same way, indicating that the entire particle undergoes rapid (< 104 Hz) reorientation about the long axis of the filament when the virus is in solution at high pH. In contrast, the virus particles in samples at low pH are immobile on this time scale.  相似文献   

7.
Most bio-inspired robots have been based on animals with jointed, stiff skeletons. There is now an increasing interest in mimicking the robust performance of animals in natural environments by incorporating compliant materials into the locomotory system. However, the mechanics of moving, highly conformable structures are particularly difficult to predict. This paper proposes a planar, extensible-link model for the soft-bodied tobacco hornworm caterpillar, Manduca sexta, to provide insight for biologists and engineers studying locomotion by highly deformable animals and caterpillar-like robots. Using inverse dynamics to process experimentally acquired point-tracking data, ground reaction forces and internal forces were determined for a crawling caterpillar. Computed ground reaction forces were compared to experimental data to validate the model. The results show that a system of linked extendable joints can faithfully describe the general form and magnitude of the contact forces produced by a crawling caterpillar. Furthermore, the model can be used to compute internal forces that cannot be measured experimentally. It is predicted that between different body segments in stance phase the body is mostly kept in tension and that compression only occurs during the swing phase when the prolegs release their grip. This finding supports a recently proposed mechanism for locomotion by soft animals in which the substrate transfers compressive forces from one part of the body to another (the environmental skeleton) thereby minimizing the need for hydrostatic stiffening. The model also provides a new means to characterize and test control strategies used in caterpillar crawling and soft robot locomotion.  相似文献   

8.
Modeling temporal and spatial colony-site dynamics in a long-lived seabird   总被引:1,自引:1,他引:0  
We studied the determinants of colony site dynamics in Audouin's gull, Larus audouinii, breeding in a small archipelago of the western Mediterranean. Data on island occupation were available for a series of 25 years, since first colonization of the archipelago in 1973. Group behavior was studied in relation to the components of dispersal: permanence or abandonment (extinction) on an island previously occupied and permanence or occupation (colonization) of another island. Generalized Linear Mixed Models (GLMMs) were used to identify the relative contribution of each explanatory variable to the probability of colony abandonment. Gulls showed a low probability (3%) of abandoning one of the islands (Grossa I.), especially when the colony was increasing in numbers from time ti-1 to ti. However, the probability of abandoning Grossa increased up to 31% when the colony was declining. The probability of island abandonment was very high for all other islands (range 66–99%) when the colony was declining, but much lower (range 36–82%) when it was increasing. Hence, we suggest that island abandonment by Audouin's gull is at least a two-step process. The first step (dispersal of a portion of the colony) probably takes place at random, as an evolutionary load typical of a species evolved in unstable habitats. The second step, a further loss of breeding pairs, seems to feedback on the first loss of members of the colony (public information), likely perceived as a loss of colony quality. Colonization of islands by gulls abandoning Grossa I. was marginally and negatively affected by the density of breeding yellow-legged gulls, a predatory species. Results apply to conservation ecology since they highlight the need to protect not only occupied patches but also those empty at present.  相似文献   

9.
10.
A tentative simulation study has been carried out on the depletion phenomenon in diblock copolymer films through dissipative particle dynamics technology. Results indicate that a depletion layer appears in nearly all the systems with strong interaction between different components, accompanied with weak interaction between the component and the boundary. The system temperature plays a dominant role in the thickness of the depletion layer, on which the component fraction also has an effect to a certain extent. The findings can give support to relevant application processes.  相似文献   

11.
The Gaussian density molecular model has been adapted for dissipative particle dynamics. The model, when combined with a soft potential, is shown to be a very flexible mesoscale model exhibiting a wide range of phase behaviour. The soft potential allows relatively large time steps to be used and hence a more rapid equilibration. In addition, the model can be used to study both uniaxial and biaxial systems. We have undertaken a number of pilot studies and have demonstrated that the Gaussian model is able to identify nematic–isotropic phase transitions in liquid crystals and the formation of ordered discotic phases.  相似文献   

12.
A simple linear-operator model both describes and predicts the dynamics of choice that may underlie the matching relation. We measured inter-food choice within components of a schedule that presented seven different pairs of concurrent variable-interval schedules for 12 food deliveries each with no signals indicating which pair was in force. This measure of local choice was accurately described and predicted as obtained reinforcer sequences shifted it to favor one alternative or the other. The effect of a changeover delay was reflected in one parameter, the asymptote, whereas the effect of a difference in overall rate of food delivery was reflected in the other parameter, rate of approach to the asymptote. The model takes choice as a primary dependent variable, not derived by comparison between alternatives—an approach that agrees with the molar view of behaviour.  相似文献   

13.
14.
Prions are infectious agents and are polymers called PrP(Sc)-Prion protein scrapies, of a normal protein, a monomer called PrP(c)-Prion protein cellular. These PrP(Sc)s cause TSEs-transmissible spongiform encephalopathies such as bovine spongiform encephalopathy (BSE) in cattle, scrapies in sheep, Kuru and Creutzfeld-Jacob diseases in humans. Cellular molecular chaperones, which are ubiquitous, stress-induced proteins, and newly found chemical and pharmacological chaperones have been found to be effective in preventing misfolding of different disease-causing proteins, essentially reducing the severity of several neurodegenerative disorders and many other protein-misfolding diseases. In this work, we propose a model for the replication of prions by nucleated polymerization in the presence of a chaperone. According to this model, the biological processes of coagulation, splitting and the inhibitory effects of the chaperone can be described by a coupled system consisting of ordinary differential equations and a partial differential equation. The model is converted into a system of ordinary differential equations and the equilibrium points are computed and their stability is studied. We give a numerical simulation of the model and we find that a disease free state can be achieved in the presence of a chaperone. The duration of the disease free state is found to increase with the amount of chaperone and this amount of chaperone can be computed from the model.  相似文献   

15.
Pattern formation in 3D random media has been a topic of interest in soft matter and biological systems. However, the onset of long-range microscopic ordering has not been explored in randomly moving self-propelled particles due to a lack of model systems as well as local probe techniques. In this article, we report on a novel experiment, using motile Escherichia coli bacteria as a model system, to study the onset of dynamic correlation and collective movement in three-dimension. We use fluctuation of an optically trapped micron-size bead as a detector of correlated bacterial motion, and further study this behavior by analyzing the motility of fluorescent bacteria in a confocal volume. We find evidence of dynamic correlation at very low volume fractions (0.01). We show that the magnitude of this correlation strongly depends on the interbacterial distances and their coupling modes. This opens up possibilities to probe long-range pattern formation in actively propelled cells or organisms coupled through hydrodynamics and/or chemical signaling.  相似文献   

16.
Many wetlands undergo seasonal cycles in precipitation and water depth.This environmental seasonality is echoed in patterns of production of fishbiomass, which, in turn, influence the phenology of other components of thefood web, including wading birds. Human activities, such as drainage orother alterations of the hydrology, can exacerbate these natural cycles andresult in detrimental stresses on fish production and the higher trophic levels dependent on this production. In this paper we model theseasonal pattern of fish production in a freshwater marsh, with specialreference to the Everglades/Big Cypress region of southern Florida.The model illustrates the temporal pattern of production through theyear, which can result in very high densities of fish at the end of ahydroperiod (period of flooding), aswell as the importance of ponds and other deep depressions, both as refugia and sinks during dry periods. The model predicts that: (1) there is an effective threshold in the length of the hydroperiod that must beexceeded for high fish-population densities to be produced, (2) large,piscivorous fishes do not appear tohave a major impact on smaller fishes in the marsh habitat, and (3) therecovery of small-fish populations in the marsh following a major droughtmay require up to a year. The last of these results is relevant toassessing anthropogenic impacts on marsh production, as these effectsmay increase the severity and frequency of droughts.  相似文献   

17.
Marsella L 《Proteins》2006,62(1):173-182
We present a study on the near equilibrium dynamics of two small proteins in the family of truncated hemoglobins, developed under the framework of a Gaussian network approach. Effective beta carbon atoms are taken into account besides Calphas for all residues but glycines in the coarse-graining procedure, without leading to an increase in the degrees of freedom (beta Gaussian Model). Normalized covariance matrix and deformation along slowest modes with collective character are analyzed, pointing out anticorrelations between functionally relevant sites for the proteins under study. In particular, we underline the functional motions of an extended tunnel-cavity system running inside the protein matrix, which provide a pathway for small ligands binding with the iron in the heme group. We give a rough estimate of the order of magnitude of the relaxation times of the slowest two overdamped modes and compare results with previous studies on globins.  相似文献   

18.
19.

Background

During the HIV infection several quasispecies of the virus arise, which are able to use different coreceptors, in particular the CCR5 and CXCR4 coreceptors (R5 and X4 phenotypes, respectively). The switch in coreceptor usage has been correlated with a faster progression of the disease to the AIDS phase. As several pharmaceutical companies are starting large phase III trials for R5 and X4 drugs, models are needed to predict the co-evolutionary and competitive dynamics of virus strains.

Results

We present a model of HIV early infection which describes the dynamics of R5 quasispecies and a model of HIV late infection which describes the R5 to X4 switch. We report the following findings: after superinfection (multiple infections at different times) or coinfection (simultaneous infection by different strains), quasispecies dynamics has time scales of several months and becomes even slower at low number of CD4+ T cells. Phylogenetic inference of chemokine receptors suggests that viral mutational pathway may generate a large variety of R5 variants able to interact with chemokine receptors different from CXCR4. The decrease of CD4+ T cells, during AIDS late stage, can be described taking into account the X4-related Tumor Necrosis Factor dynamics.

Conclusion

The results of this study bridge the gap between the within-patient and the inter-patients (i.e. world-wide) evolutionary processes during HIV infection and may represent a framework relevant for modeling vaccination and therapy.
  相似文献   

20.
Lakhno VD  Sychev VV 《Biofizika》2004,49(3):453-456
The hole transfer in the nucleotide sequence GAGG, where guanine G is a donor and the guanine doublet GG is an acceptor, was considered. It was shown that the relaxation of the hole on the acceptor is accompanied by rapid oscillations of the hole between the donor and the acceptor with an oscillation period of a few picoseconds. The calculated slow relaxation of the hole on the acceptor over a period of 2 ns was compared with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号