首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Purging HIV-1 to cure the infection in patients undergoing suppressive antiretroviral therapy requires targeting all possible viral reservoirs. Other than the memory CD4+ T cells, several other HIV-1 reservoirs have been identified. HIV-1 infection in the brain as a reservoir is well documented, but not fully characterized. There, microglia, perivascular macrophages, and astrocytes can be infected by HIV-1. HIV-1 infection in astrocytes has been described as a nonproductive and primarily a latent infection. Using primary human astrocytes, we investigated latent HIV-1 infection and tested phorbol 12-myristate 13-acetate (PMA), a protein kinase C agonist, as an HIV-1-latency- reversing agent in infected astrocytes. Chloroquine (CQ) was used to facilitate initial HIV-1 escape from endosomes in astrocytes. CQ significantly increased HIV-1 infection. But treatment with PMA or viral Tat protein was similar to untreated HIV-1-infected astrocytes. Long-term follow-up of VSV-envelope-pseudotyped HIV-1 infected astrocytes showed persistent infection for 110 days, indicating the active state of the virus.  相似文献   

3.
This study demonstrates that human immunodeficiency virus type 1 (HIV-1) Tat protein amplifies the activity of tumor necrosis factor (TNF), a cytokine that stimulates HIV-1 replication through activation of NF-kappa B. In HeLa cells stably transfected with the HIV-1 tat gene (HeLa-tat cells), expression of the Tat protein enhanced both TNF-induced activation of NF-kappa B and TNF-mediated cytotoxicity. A similar potentiation of TNF effects was observed in Jurkat T cells and HeLa cells treated with soluble Tat protein. TNF-mediated activation of NF-kappa B and cytotoxicity involves the intracellular formation of reactive oxygen intermediates. Therefore, Tat-mediated effects on the cellular redox state were analyzed. In both T cells and HeLa cells HIV-1 Tat suppressed the expression of Mn-dependent superoxide dismutase (Mn-SOD), a mitochondrial enzyme that is part of the cellular defense system against oxidative stress. Thus, Mn-SOD RNA protein levels and activity were markedly reduced in the presence of Tat. Decreased Mn-SOD expression was associated with decreased levels of glutathione and a lower ratio of reduced:oxidized glutathione. A truncated Tat protein (Tat1-72), known to transactivate the HIV-1 long terminal repeat (LTR), no longer affected Mn-SOD expression, the cellular redox state or TNF-mediated cytotoxicity. Thus, our experiments demonstrate that the C-terminal region of HIV-1 Tat is required to suppress Mn-SOD expression and to induce pro-oxidative conditions reflected by a drop in reduced glutathione (GSH) and the GSH:oxidized GSH (GSSG) ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have here investigated the effect of TNF-related apoptosis-inducing ligand (TRAIL), a new member of the TNF cytokine superfamily, on the survival of Jurkat lymphoblastoid cell lines stably transfected with plasmids expressing the wild-type or mutated (Cys22) human immunodeficiency virus type 1 (HIV-1) tat gene. Jurkat cells transfected with wild-type tat were resistant to TRAIL-mediated apoptosis, while Jurkat cells mock-transfected with the control plasmid or with a mutated nonfunctional tat cDNA were highly susceptible to TRAIL-mediated apoptosis. Also, pretreatment with low concentrations (10-100 ng/ml) of extracellular synthetic Tat protein partially protected Jurkat cells from TRAIL-mediated apoptosis. Taken together, these results demonstrated that endogenously expressed tat and, to a lesser extent, extracellular Tat block TRAIL-mediated apoptosis. Since it has been shown that primary lymphoid T cells purified from HIV-1-infected individuals are more susceptible than those purified from normal individuals to TRAIL-mediated apoptosis, our findings underscore a potentially important role of Tat in protecting HIV-1-infected cells from TRAIL-mediated apoptosis.  相似文献   

5.
6.
Human immunodeficiency virus-1 (HIV-1) disease is characterized by a relentless decline in CD4(+) T cells, resulting in the development of AIDS. Extracellular Tat secreted from the HIV-1 infected cells, enters non-infected T cells to induce apoptosis. A number of mechanisms, none of which is mutually exclusive, have been attributed to the cell depletion property of Tat protein. In the present communication, we provide evidence that the cell-killing effect of Tat is mediated by the activation of p53 pathway via inhibition of SIRT1, an NAD(+)-dependent deacetylase belonging to class III histone deacetylases. This evidence is based on the following experimental facts reported herein: (1) Overexpression of Tat protein decreases both the deacetylase and promoter activity of SIRT1, (2) SIRT1 inhibition by Tat involves increased levels of acetylated p53 and (3) The activation of p53 leads to subsequent increases in the expression of p53 target genes, p21 and BAX.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
CD4+ T-cell depletion in AIDS patients involves induction of apoptosis in human immunodeficiency virus (HIV)-infected and noninfected T cells. The HIV type 1 (HIV-1)-transactivating protein Tat enhances apoptosis and activation-induced cell death (AICD) of human T cells. This effect is mediated by the CD95 (APO-1/Fas) receptor-CD95 ligand (CD95L) system and may be linked to the induction of oxidative stress by Tat. Here we show that HIV-1 Tat-induced oxidative stress is necessary for sensitized AICD in T cells caused by CD95L expression. Tat-enhanced apoptosis and CD95L expression in T cells are inhibited by neutralizing anti-Tat antibodies, antioxidants, and the Tat inhibitor Ro24-7429. Chimpanzees infected with HIV-1 show viral replication resembling early infection in humans but do not show T-cell depletion or progression towards AIDS. The cause for this discrepancy is unknown. Here we show that unlike Tat-treated T cells in humans, Tat-treated chimpanzee T cells do not show downregulation of manganese superoxide dismutase or signs of oxidative stress. Chimpanzee T cells are also resistant to Tat-enhanced apoptosis, AICD, and CD95L upregulation.  相似文献   

15.
16.
HIV-1 transactivating protein Tat is essential for virus replication and progression of HIV disease. HIV-1 Tat stimulates transactivation by binding to HIV-1 transactivator responsive element (TAR) RNA, and while secreted extracellularly, it acts as an immunosuppressor, an activator of quiescent T-cells for productive HIV-1 infection, and by binding to CXC chemokine receptor type 4 (CXCR4) as a chemokine analogue. Here we present a novel HIV-1 Tat antagonist, a neomycin B-hexaarginine conjugate (NeoR), which inhibits Tat transactivation and antagonizes Tat extracellular activities, such as increased viral production, induction of CXCR4 expression, suppression of CD3-activated proliferation of lymphocytes, and upregulation of the CD8 receptor. Moreover, Tat inhibits binding of fluoresceine isothiocyanate (FITC)-labeled NeoR to human peripheral blood mononuclear cells (PBMC), indicating that Tat and NeoR bind to the same cellular target. This is further substantiated by the finding that NeoR competes with the binding of monoclonal Abs to CXCR4. Furthermore, NeoR suppresses HIV-1 binding to cells. Importantly, NeoR accumulates in the cell nuclei and inhibits the replication of M- and T-tropic HIV-1 laboratory isolates (EC(50) = 0.8-5.3 microM). A putative model structure for the TAR-NeoR complex, which complies with available experimental data, is presented. We conclude that NeoR is a multitarget HIV-1 inhibitor; the structure, and molecular modeling and dynamics, suggest its binding to TAR RNA. NeoR inhibits HIV-1 binding to cells, partially by blocking the CXCR4 HIV-1 coreceptor, and it antagonizes Tat functions. NeoR is therefore an attractive lead compound, capable of interfering with different stages of HIV infection and AIDS pathogenesis.  相似文献   

17.
Kaposi's sarcoma (KS) arises more frequently in homosexual and bisexual men than in other groups of HIV-1 infected individuals. Clinico-epidemiologic data indicate that homosexuals often are infected with multiple microbial agents and/or subjected to other antigenic stimuli, preceding or accompanying HIV-1 infection. Signs of immune activation, in fact, frequently have been detected in these individuals, and the onset of KS can precede any sign of immunodeficiency. These data have suggested that products from activated immune cells may affect the development of AIDS-KS. Here we report that conditioned media from activated or dysregulated T cells contain a variety of cytokines that promote the growth of spindle cells derived from KS lesions of AIDS patients (AIDS-KS cells) and induce normal vascular cells, potential cell progenitors of the AIDS-KS cells, to acquire features of the KS cell phenotype ("spindle" cell morphology and growth responsiveness to the mitogenic effect of extracellular HIV-1 Tat protein). The same conditioned media or cytokines promote HIV-1 gene expression and rescue defective HIV-1 proviruses, interrupting HIV-1 latency and increasing Tat production. The cellular and viral effects of cytokines are increased in an additive or synergistic manner by picomolar concentrations of extracellular Tat. These data suggest that cytokines produced by activated immune cells cooperate with HIV-1 infection in AIDS-KS pathogenesis.  相似文献   

18.
19.
Cannabinoids modulate nitric oxide (NO) levels in cells of the central nervous system. Here we studied the effect of cannabinoid CB(1) and CB(2) receptor agonists on the release of NO and cell toxicity induced by the human immuno-deficiency virus-1 Tat protein (HIV-1 Tat) in rat glioma C6 cells. The CB(1) and CB(2) agonist WIN 55,212-2 inhibited the expression of inducible NO synthase (iNOS) and NO release caused by treatment of C6 cells with HIV-1 Tat and interferon-gamma (IFN-gamma). The effect of WIN 55,212-2 was uniquely due to CB(1) receptors, as shown by experiments carried out with selective CB(1) and CB(2) receptor agonists and antagonists. CB(1) receptor stimulation also inhibited HIV-1 Tat + IFN-gamma-induced and NO-mediated cell toxicity. Moreover, cell treatment with HIV-1 Tat + IFN-gamma induced a significant inhibition of CB(1), but not CB(2), receptor expression. This effect was mimicked by the NO donor GSNO, suggesting that the inhibition of CB(1) expression was due to HIV-1 Tat + IFN-gamma-induced NO overexpression. HIV-1 Tat + IFN-gamma treatment also induced a significant inhibition of the uptake of the endocannabinoid anandamide by C6 cells with no effect on anandamide hydrolysis. These findings show that the endocannabinoid system, through the modulation of the l-arginine/NO pathway, reduces HIV-1 Tat-induced cytotoxicity, and is itself regulated by HIV-1 Tat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号