首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coexistence of similar species accounts for some 30% of diversity within communities, yet the coexistence and relative abundance of similar species is a continuing ecological conundrum. Using close phylogenetic relatedness as a measure of similarity, we previously demonstrated that neither classic niche theory nor neutral theory can explain the relative abundances of co-occurring pairs of similar tree species in a diverse tropical forest. Here, we show that the stable, focused competition of a temporal niche dynamic fits the distribution of observed fractional abundances (pairwise relative abundances). Previously published, independent evidence of temporal dynamics in this community supports our results; our model identifies additional criteria for field tests of differential sensitivity (DS) temporal dynamics. The success of temporal dynamics at explaining the observed distribution—and the failure of alternative hypotheses to do so—indicates that current diagnostics of community structure and assembly needs general re-examination. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Measuring climatic niche position and breadth may help to determine where species can occur over space and time. Using GIS-based and phylogenetic comparative methods, we investigated global patterns of variation in climatic niche breadth in lacertid lizards to test the following three hypotheses about climatic niche widths. First, does a species' temperature or precipitation niche breadth relate to its temperature or precipitation niche position(the mean value of annual mean temperature or annual precipitation across sampled localities in the range of each species)? Second, are there trade-offs between a species' temperature niche breadth and precipitation niche breadth? Third, does a species' temperature or precipitation niche breadth relate to altitude or latitude? We expect that:(1) species distributed in cold regions are specialized for low-temperature environments(i.e. narrow niche breadth center around low temperatures);(2) a negative relationship between species niche breadth on temperature and precipitation axes according to the tradeoff hypothesis(i.e. species that tolerate a broad range of precipitation regimes cannot also tolerate a broad range of temperatures);(3) precipitation niche breadth decreases with altitude or latitude, whereas temperature climatic niche breadth increases with altitude or latitude. Based on the analytical results we found that:(1) temperature niche breadth and position are negatively related, while precipitation niche breadth and position are positively related;(2) there is no trade-off between temperature and precipitation niche breadths; and (3) temperature niche breadth and latitude/altitude are positively related, but precipitation niche breadth and latitude/altitude are not significantly related. Our results show many similarities with previous studies on climatic niche widths reported for amphibians and lizards, which provide further evidence that such macroecological patterns of variation in climatic niche breadths may be widespread.  相似文献   

3.
In real networks, the resources that make up the nodes and edges are finite. This constraint poses a serious problem for network modeling, namely, the compatibility between robustness and efficiency. However, these concepts are generally in conflict with each other. In this study, we propose a new fitness-driven network model for finite resources. In our model, each individual has its own fitness, which it tries to increase. The main assumption in fitness-driven networks is that incomplete estimation of fitness results in a dynamical growing network. By taking into account these internal dynamics, nodes and edges emerge as a result of exchanges between finite resources. We show that our network model exhibits exponential distributions in the in- and out-degree distributions and a power law distribution of edge weights. Furthermore, our network model resolves the trade-off relationship between robustness and efficiency. Our result suggests that growing and anti-growing networks are the result of resolving the trade-off problem itself.  相似文献   

4.
A prediction arising from several evolutionary diet breadth models is that, in insect herbivores whose adults practise adaptive host plant selection based on larval performance, female adult lifespan should be negatively correlated with larval diet breadth. In one category of models, female adult lifespan drives evolutionary changes in larval diet breadth; in the other category, larval diet breadth drives evolutionary changes in female adult lifespan. Applying the method of independent contrasts to a biologically and phylogenetically diverse array of Lepidoptera, we ask whether larval diet breadth—as measured by the number of larval food plant species reported in the literature—is negatively correlated with female adult lifespan at the interspecific level. We show that these two life history variables are indeed inversely related. Next, we relax the assumption, common to all of the models, that the female adult is the life stage responsible for the distribution of progeny among different host plants. By introducing into our data set three species whose females are incapable of flight (due to either aptery or brachyptery), and whose larvae are the dispersive stage, the negative correlation between female adult lifespan and larval diet breadth is lost, when using the independent contrasts method. We interpret this effect as supporting the models’ common prediction. Ours is the first reported evidence of a lifespan/diet breadth trade-off at the interspecific level among insects, and it confirms the findings of a previous study in which the degree of habitat specialisation among arthropods was inversely related to proxy measures of the degree of search time constraint. In one of our “diet breadth drives changes in lifespan” models, the females’ type of egg maturation strategy (as measured by the ovigeny index) is predicted to be positively correlated with larval diet breadth, and it mediates a female adult lifespan/larval diet breadth trade-off; however, we found no convincing support for such a role.  相似文献   

5.
We investigate the trade-off between the robustness against random and targeted removal of nodes from a network. To this end we utilize the stochastic block model to study ensembles of infinitely large networks with arbitrary large-scale structures. We present results from numerical two-objective optimization simulations for networks with various fixed mean degree and number of blocks. The results provide strong evidence that three different blocks are sufficient to realize the best trade-off between the two measures of robustness, i.e. to obtain the complete front of Pareto-optimal networks. For all values of the mean degree, a characteristic three block structure emerges over large parts of the Pareto-optimal front. This structure can be often characterized as a core-periphery structure, composed of a group of core nodes with high degree connected among themselves and to a periphery of low-degree nodes, in addition to a third group of nodes which is disconnected from the periphery, and weakly connected to the core. Only at both extremes of the Pareto-optimal front, corresponding to maximal robustness against random and targeted node removal, a two-block core-periphery structure or a one-block fully random network are found, respectively.  相似文献   

6.
Evolutionary biologists have often assumed that ecological generalism comes at the expense of less intense exploitation of specific resources and that this trade-off will promote the evolution of ecologically specialized daughter species. Using a phylogenetic comparative approach with butterflies as a model system, we test hypotheses that incorporate changes in niche breadth and location into explanations of the taxonomic diversification of insect herbivores. Specifically, we compare the oscillation hypothesis, where speciation is driven by host-plant generalists giving rise to specialist daughter species, to the musical chairs hypothesis, where speciation is driven by host-plant switching, without changes in niche breadth. Contrary to the predictions of the oscillation hypothesis, we recover a negative relationship between host-plant breadth and diversification rate and find that changes in host breadth are seldom coupled to speciation events. By contrast, we present evidence for a positive relationship between rates of host switching and butterfly diversification, consonant with the musical chairs hypothesis. These results suggest that the costs of trophic generalism in plant-feeding insects may have been overvalued and that transitions from generalists to ecological specialists may not be an important driver of speciation in general.  相似文献   

7.
Multiple evidence of positive relationships between nice breadth and range size (NB–RS) suggested that this can be a general ecological pattern. However, correlations between niche breadth and range size can emerge as a by-product of strong spatial structure of environmental variables. This can be problematic because niche breadth is often assessed using broad-scale macroclimatic variables, which suffer heavy spatial autocorrelation. Microhabitat measurements provide accurate information on species tolerance, and show limited autocorrelation. The aim of this study was to combine macroclimate and microhabitat data to assess NB–RS relationships in European plethodontid salamanders (Hydromantes), and to test whether microhabitat variables with weak autocorrelation can provide less biased NB–RS estimates across species. To measure macroclimatic niche, we gathered comprehensive information on the distribution of all Hydromantes species, and combined them with broad-scale climatic layers. To measure microhabitat, we recorded salamander occurrence across > 350 caves and measured microhabitat features influencing their distribution: humidity, temperature and light. We assessed NB–RS relationships through phylogenetic regression; spatial null-models were used to test whether the observed relationships are a by-product of autocorrelation. We observed positive relationships between niche breadth and range size at both the macro- and microhabitat scale. At the macroclimatic scale, strong autocorrelation heavily inflated the possibility to observe positive NB–RS. Spatial autocorrelation was weaker for microhabitat variables. At the microhabitat level, the observed NB–RS was not a by-product of spatial structure of variables. Our study shows that heavy autocorrelation of variables artificially increases the possibility to detect positive relationships between bioclimatic niche and range size, while fine-scale data of microhabitat provide more direct measure of conditions selected by ectotherms, and enable less biased measures of niche breadth. Combining analyses performed at multiple scales and datasets with different spatial structure provides more complete niche information and effectively tests the generality of niche breadth–range size relationships.  相似文献   

8.
Real networks, including biological networks, are known to have the small-world property, characterized by a small “diameter”, which is defined as the average minimal path length between all pairs of nodes in a network. Because random networks also have short diameters, one may predict that the diameter of a real network should be even shorter than its random expectation, because having shorter diameters potentially increases the network efficiency such as minimizing transition times between metabolic states in the context of metabolic networks. Contrary to this expectation, we here report that the observed diameter is greater than the random expectation in every real network examined, including biological, social, technological, and linguistic networks. Simulations show that a modest enlargement of the diameter beyond its expectation allows a substantial increase of the network modularity, which is present in all real networks examined. Hence, short diameters appear to be sacrificed for high modularities, suggesting a tradeoff between network efficiency and advantages offered by modularity (e.g., multi-functionality, robustness, and/or evolvability).  相似文献   

9.
10.
To compare community assemblage patterns in tropical northeastern and subtropical central eastern Australia across selected gradients and scales, we tested the relationship of species traits with phylogenetic structure, and niche breadth. We considered phylogenetic relationships across current‐day species in assemblages in relation to rain forest species pool sizes, and trait values along gradients including elevation and latitude. Trait values were quantified across scales for seed size, leaf area, wood density and maximum height at maturity for 1137 species and 596 assemblages using trait gradient analysis (TGA). Local assemblages of subtropical species had narrower trait ranges, and higher niche breadth values than corresponding assemblages of tropical species. Leaf size and seed size increased at low latitudes, and community phylogenetic structure was most strongly correlated with seed traits in the subtropics, reflecting dispersal and re‐colonization processes. Elevation accounted for little of the variance in community phylogenetic structure or trait variation across local and regional scales. Stable moist forest areas retained many species from ancestral rain forest lineages across a range of temporally conserved habitats; species within assemblages were less related; and rain forest assemblages had higher functional diversity, but lower niche breadth. This suggests that on average, assemblages of species in stable areas had greater trait variation and narrower distributions. Historic and recent rain forest contraction and re‐expansion can result in recolonized areas that are dominated by species that are more related (phylogenetically) than by chance, have smaller, widely dispersed seeds, and greater niche breadth (broader distributions).  相似文献   

11.
12.
Systems-oriented genetic approaches that incorporate gene expression and genotype data are valuable in the quest for genetic regulatory loci underlying complex traits. Gene coexpression network analysis lends itself to identification of entire groups of differentially regulated genes—a highly relevant endeavor in finding the underpinnings of complex traits that are, by definition, polygenic in nature. Here we describe one such approach based on liver gene expression and genotype data from an F2 mouse intercross utilizing weighted gene coexpression network analysis (WGCNA) of gene expression data to identify physiologically relevant modules. We describe two strategies: single-network analysis and differential network analysis. Single-network analysis reveals the presence of a physiologically interesting module that can be found in two distinct mouse crosses. Module quantitative trait loci (mQTLs) that perturb this module were discovered. In addition, we report a list of genetic drivers for this module. Differential network analysis reveals differences in connectivity and module structure between two networks based on the liver expression data of lean and obese mice. Functional annotation of these genes suggests a biological pathway involving epidermal growth factor (EGF). Our results demonstrate the utility of WGCNA in identifying genetic drivers and in finding genetic pathways represented by gene modules. These examples provide evidence that integration of network properties may well help chart the path across the gene–trait chasm. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Tova F. Fuller, Anatole Ghazalpour contributed equally to this work.  相似文献   

13.
A large proportion of phytophagous insect species are specialised on one or a few host plants, and female host plant preference is predicted to be tightly linked to high larval survival and performance on the preferred plant(s). Specialisation is likely favoured by selection under stable circumstances, since different host plant species are likely to differ in suitability—a pattern usually explained by the “trade-off hypothesis”, which posits that increased performance on a given plant comes at a cost of decreased performance on other plants. Host plant specialisation is also ascribed an important role in host shift speciation, where different incipient species specialise on different host plants. Hence, it is important to determine the role of host plants when studying species divergence and niche partitioning between closely related species, such as the butterfly species pair Leptidea sinapis and Leptidea reali. In Sweden, Leptidea sinapis is a habitat generalist, appearing in both forests and meadows, whereas Leptidea reali is specialised on meadows. Here, we study the female preference and larval survival and performance in terms of growth rate, pupal weight and development time on the seven most-utilised host plants. Both species showed similar host plant rank orders, and larvae survived and performed equally well on most plants with the exceptions of two rarely utilised forest plants. We therefore conclude that differences in preference or performance on plants from the two habitats do not drive, or maintain, niche separation, and we argue that the results of this study do not support the trade-off hypothesis for host plant specialisation, since the host plant generalist Leptidea sinapis survived and performed as well on the most preferred meadow host plant Lathyrus pratensis as did Leptidea reali although the generalist species also includes other plants in its host range. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Several properties of food webs—the networks of feeding links between species—are known to vary systematically with the species richness of the underlying community. Under the ‘latitude–niche breadth hypothesis’, which predicts that species in the tropics will tend to evolve narrower niches, one might expect that these scaling relationships could also be affected by latitude. To test this hypothesis, we analysed the scaling relationships between species richness and average generality, vulnerability and links per species across a set of 196 empirical food webs. In estuarine, marine and terrestrial food webs there was no effect of latitude on any scaling relationship, suggesting constant niche breadth in these habitats. In freshwater communities, on the other hand, there were strong effects of latitude on scaling relationships, supporting the latitude–niche breadth hypothesis. These contrasting findings indicate that it may be more important to account for habitat than latitude when exploring gradients in food-web structure.  相似文献   

15.
A central challenge in community ecology is to predict patterns of biodiversity with mechanistic models. The neutral model of biodiversity is a simple model that appears to provide parsimonious and accurate predictions of biodiversity patterns in some ecosystems, even though it ignores processes such as species interactions and niche structure. In a recent paper, we used analytical techniques to reveal why the mean predictions of the neutral model are robust to niche structure in high diversity but not low-diversity ecosystems. In the present paper, we explore this phenomenon further by generating stochastic simulated data from a spatially implicit hybrid niche-neutral model across different speciation rates. We compare the resulting patterns of species richness and abundance with the patterns expected from a pure neutral and a pure niche model. As the speciation rate in the hybrid model increases, we observe a surprisingly rapid transition from an ecosystem in which diversity is almost entirely governed by niche structure to one in which diversity is statistically indistinguishable from that of the neutral model. Because the transition is rapid, one prediction of our abstract model is that high-diversity ecosystems such as tropical forests can be approximated by one simple model—the neutral model—whereas low-diversity ecosystems such as temperate forests can be approximated by another simple model—the niche model. Ecosystems that require the hybrid model are predicted to be rare, occurring only over a narrow range of speciation rates.  相似文献   

16.
Evolution of adaptive phenotypic flexibility requires a system that can dynamically restore and update a functional phenotype in response to environmental change. The architecture of such a system evolves under the conflicting demands of versatility and robustness, and resolution of these demands should be particularly evident in organisms that require external inputs for reiterative trait production within a generation, such as in metabolic networks that underlie yearly acquisition of diet‐dependent coloration in birds. Here, we show that a key structural feature of carotenoid networks–redundancy of biochemical pathways–enables these networks to translate variable environmental inputs into consistent phenotypic outcomes. We closely followed life‐long changes in structure and utilization of metabolic networks in a large cohort of free‐living birds and found that greater individual experience with dietary change between molts leads to wider occupancy of the metabolic network and progressive accumulation of redundant pathways in a functionally active network. This generated a regime of emergent buffering whereby greater dietary experience was mechanistically linked to greater robustness of resulting traits and an increasing ability to retain and implement previous adaptive solutions. Thus, experience‐related buffering links evolvability and robustness in carotenoid‐metabolizing networks and we argue that this mechanistic principle facilitates the evolution of phenotypic flexibility.  相似文献   

17.
18.
When herbivorous insects interact, they can increase or decrease each other's fitness. As it stands, we know little of what causes this variation. Classic competition theory predicts that competition will increase with niche overlap and population density. And classic hypotheses of herbivorous insect diversification predict that diet specialists will be superior competitors to generalists. Here, we test these predictions using phylogenetic meta‐analysis. We estimate the effects of diet breadth, population density and proxies of niche overlap: phylogenetic relatedness, physical proximity and feeding‐guild membership. As predicted, we find that competition between herbivorous insects increases with population density as well as phylogenetic and physical proximity. Contrary to predictions, competition tends to be stronger between than within feeding guilds and affects specialists as much as generalists. This is the first statistical evidence that niche overlap increases competition between herbivorous insects. However, niche overlap is not everything; complex feeding guild effects indicate important indirect interactions.  相似文献   

19.
Four models of network structure are combined with models of bioenergetic dynamics to study the role of food web topology and nonlinear dynamics on species coexistence in complex ecological networks. Network models range from the highly structured niche model to loosely constrained energetically feasible random networks. Bioenergetic models differ in how they represent primary production, functional responses, and consumption by generalists. Network structure weakly influenced the ability of species to coexist. Species persistence is strongly affected by functional responses and generalists’ consumption rates but weakly affected by models and amounts of primary production. Despite these generalities, specific mechanisms that determine persistence under one dynamical regime, such as top-down control by consumers, may play an insignificant role under different dynamical conditions. Future research is needed to strengthen the weak empirical basis for various functional forms and parameter values that strongly influence whether species can coexist in complex food webs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Central carbon metabolism is a basic and exhaustively analyzed pathway. However, the intrinsic robustness of the pathway might still conceal uncharacterized reactions. To test this hypothesis, we constructed systematic multiple‐knockout mutants involved in central carbon catabolism in Escherichia coli and tested their growth under 12 different nutrient conditions. Differences between in silico predictions and experimental growth indicated that unreported reactions existed within this extensively analyzed metabolic network. These putative reactions were then confirmed by metabolome analysis and in vitro enzymatic assays. Novel reactions regarding the breakdown of sedoheptulose‐7‐phosphate to erythrose‐4‐phosphate and dihydroxyacetone phosphate were observed in transaldolase‐deficient mutants, without any noticeable changes in gene expression. These reactions, triggered by an accumulation of sedoheptulose‐7‐phosphate, were catalyzed by the universally conserved glycolytic enzymes ATP‐dependent phosphofructokinase and aldolase. The emergence of an alternative pathway not requiring any changes in gene expression, but rather relying on the accumulation of an intermediate metabolite may be a novel mechanism mediating the robustness of these metabolic networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号