首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies showed that the normal microflora of the largeintestine synthesizes biotin and that the colon is capable of absorbingintraluminally introduced free biotin. Nothing, however, is known aboutthe mechanism of biotin absorption in the large intestine and itsregulation. To address these issues, we used the human-derived,nontransformed colonic epithelial cell line NCM460. Theinitial rate of biotin uptake was found to be1) temperature and energy dependent,2)Na+ dependent (coupling ratio of1:1), 3) saturable as a function ofconcentration [apparent Michaelis constant(Km) of 19.7 µM], 4) inhibited bystructural analogs with a free carboxyl group at the valeric acidmoiety, and 5) competitivelyinhibited by the vitamin pantothenic acid (inhibitionconstant of 14.4 µM). Pretreatment with the protein kinase C (PKC)activators phorbol 12-myristate 13-acetate (PMA) and1,2-dioctanoyl-sn-glycerolsignificantly inhibited biotin uptake. In contrast, pretreatment withthe PKC inhibitors staurosporine and chelerythrine led to a slight, but significant, increase in biotin uptake. The effect of PMA was mediatedvia a marked decrease in maximal uptake velocity and aslight increase in apparentKm. Pretreatmentof cells with modulators of the protein kinase A-mediated pathway, onthe other hand, showed no significant effect on biotin uptake. Theseresults demonstrate, for the first time, the functional existence of aNa+-dependent, specializedcarrier-mediated system for biotin uptake in colonic epithelial cells.This system is shared with pantothenic acid and appears to be under theregulation of an intracellular PKC-mediated pathway.

  相似文献   

2.
The water-soluble vitamin B6 (pyridoxine) is important for normal cellular functions, growth, and development. The vitamin is obtained from two exogenous sources: a dietary source, which is absorbed in the small intestine, and a bacterial source, where the vitamin is synthesized in significant quantities by the normal microflora of the large intestine. Evidence exists to suggest the bioavailability of the latter source of the vitamin, but nothing is known about the mechanism involved and its regulation. In this study, we addressed these issues using young adult mouse colonic epithelial (YAMC) cells and human colonic apical membrane vesicles (AMV) as models and using [3H]pyridoxine as the uptake substrate. The results showed the initial rate of [3H]pyridoxine uptake by YAMC cells to be 1) energy- and temperature- (but not Na-) dependent and to occur without metabolic alteration in the transported substrate; 2) saturable as a function of concentration with an apparent Km and Vmax of 2.1 +/- 0.5 muM and 53.4 +/- 4.3 pmol.mg protein(-1).3 min(-1), respectively; 3) cis-inhibited by unlabeled pyridoxine and its structural analogs, but not by the unrelated compounds theophylline, penicillamine, and isoniazid; 4) trans-stimulated by unlabeled pyridoxine; 5) amiloride sensitive; and 6) regulated by extracellular and intracellular factors. Uptake of pyridoxine by native human colonic AMV was also found to involve a carrier-mediated process. These studies demonstrate, for the first time, the functional existence of a specific and regulatable carrier-mediated process for pyridoxine uptake by mammalian colonocytes.  相似文献   

3.
Little is known about the cellular and molecular regulation of the uptake process of the water-soluble vitamin biotin into liver cells, the major site of biotin utilization and metabolism. Such studies are best done using a highly viable and homogeneous cellular system that allows examination of prolonged exposure to an agent(s) or a particular condition(s) on the uptake process. Isolated hepatocytes when maintained in primary culture lose their ability to transport biotin by the specialized carrier system. The aim of the present study was, therefore, to examine the mechanism(s) of biotin uptake by the cultured human-derived liver cells, Hep G2. Uptake to biotin by Hep G2 cells was appreciable and linear for up to 10 min of incubation. The uptake process was Na+ gradient-dependent as indicated by studies of Na+ replacement and pretreatment of cells with gramicidin and ouabain. Biotin uptake was also dependent on both incubation temperature and intracellular energy. Unlabeled biotin and the structural analogs with free carboxyl groups (thioctic acid, desthiobiotin) but not those with blocked carboxyl group (biocytin, biotin methyl ester, and thioctic amide) caused significant inhibition of 3H-biotin uptake at 37°C but not 4°C. Initial rate of biotin uptake was saturable as a function of concentration at 37°C but was lower and linear at 4°C. Pretreatment of Hep G2 cells with sulfhydryl group inhibitors (e.g., p-chloromer-curibenzene sulfonate) led to a significant inhibition in biotin uptake; this inhibition was effectively reversed by reducing agents (e.g., dithiothreitol). Biotin uptake was also inhibited by the membrane transport inhibitors probenecid (noncompetitively), DIDS and furosemide but not by amiloride. Pretreatment of Hep G2 cells with valinomycin did not alter biotin uptake. The stoichiometric ratio of biotin to Na+ uptake in Hep G2 cells was also determined and found to be 1:1. These findings demonstrate that biotin uptake by these cultured liver cells is mediated through a specialized carrier system that is dependent on Na+-gradient, temperature, and energy and transports the vitamin by an electroneutral process. These findings are similar to those seen with native liver tissue preparations and demonstrate the suitability of Hep G2 cells for in-depth investigations of the cellular and molecular regulation of biotin uptake by the liver. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work, and as such, is in the public domain in the United State of America
  • .  相似文献   

    4.
    The immunofluorescence study revealed that both our established human hepatoma cell lines, HA22T/VGH and HA47T/VGH, were absent of cytokeratin. This observation was further confirmed by a western blot study. However, they as well as the other human hepatoma cells, Hep G2, Hep 3B, and SK-Hep-1 expressed vimentin.  相似文献   

    5.
    The rates of oleate uptake by Candida tropicalis cells grown on a high oleate concentration (3.5 mM oleate in the presence of 0.50% Brij 58) were higher than those observed in cells grown on glucose; however, oleate uptake was not saturable with substrate concentration. Cells grown at a low oleate concentration (1.0 mM oleate and 2.5% Brij 58) grew to a lower density and at a slightly slower rate; these cells were found to take up oleate at a rate 43-fold higher than cells grown on high oleate concentration. Furthermore, oleate uptake by the cells grown in low oleate medium was a saturable process with Kt and Vmax values of 56 microM and 15 nmol/(min.mg cell protein), respectively. The growth of C. tropicalis under low fatty acid concentration thus clearly results in the induction of a saturable process for its uptake. The total level of acyl-CoA synthetase activity in cells grown on the low oleate concentrations was only twofold higher than in high oleate or glucose grown cells; the level of this enzyme thus does not account for the saturable process and suggests that either the enzyme is regulated in vivo or else a hitherto unidentified enzyme is induced by growth in low concentrations of oleate.  相似文献   

    6.
    We evaluated the relationship between apical surface fluid (ASF) and protein secretion in Calu-3 cells grown at an air-liquid interface. Calu-3 monolayers responded to forskolin, a cystic fibrosis transmembrane regulator (CFTR) channel agonist, by secreting a significant amount of ASF. Such a response from Calu-3 monolayers was not observed with CFTR channel blockers glybenclamide and DPC. Other ion channel mediators, PGF-2alpha, PMA, DNDS, and DIDS, had no effect on Calu-3 ASF secretion. Forskolin decreased Calu-3 protein secretion and glybenclamide increased protein secretion. Similarly, forskolin decreased Calu-3 lysozyme secretion, whereas glybenclamide and DPC increased lysozyme secretion. We observed significant changes in Calu-3 fluid and protein secretions with ion channel mediators known to alter CFTR activity. Our results demonstrate a functional link between fluid and protein secretions in Calu-3 apical surface and suggested a possible involvement of CFTR in these processes.  相似文献   

    7.
    8.
    Abstract Cell suspensions of Methanobacterium thermoautotrophicum took up 45Ca2+ in a temperature-dependent, Ca2+-saturable and Co2+-sensitive process. The accumulation of 45Ca2+ was lower in the cells energized by CO2+ H2 than in those under non-energized conditions. The accumulated Ca2+ were, in part, released by the divalent cations ionophore A23187 in the presence of EGTA while the uptake of Ca2+ was accelerated by the addition of A23187 to the medium containing Ca2+. The results indicate the presence of a carrier-mediated Ca2+ uptake in the Methanobacterium thermoautotrophicum membrane which is compensated by an energy-dependent and outward-directed Ca2+ transport.  相似文献   

    9.
    M. C. Astle  P. H. Rubery 《Planta》1985,166(2):252-258
    The effects of methyl jasmonate and jasmonic acid on uptake of abscisic acid (ABA) by suspension-cultured runner-bean cells and subapical runner-bean root segments have been investigated. Increasing concentrations of methyl jasmonate inhibit ABA uptake by the cultured cells with a K i of 22±3 M. This is not due to cytoplasmic acidification or to effects on metabolism of ABA, and is not additive with inhibition of radioactive ABA uptake by nonradioactive ABA. Uptake of indol-3-yl acetic acid (IAA) is unaffected by methyl jasmonate. The maximum effect of nonradioactive ABA in inhibiting uptake of radioactive ABA, previously shown to reflect saturation of an ABA carrier, is generally greater than the effect of maximally inhibitory concentrations of methyl jasmonate. Similar results were obtained with root segments, but longer incubation times were necessary to observe inhibitory effects of methyl jasmonate. Demethylation of methyl jasmonate to jasmonic acid does not appear to be required since similar concentrations of jasmonic acid had no observable direct effect on ABA uptake other than that attributable to cytoplasmic acidification. Histidine reagents, a proton ionophore and acidic external pH all affect in parallel the inhibition by methyl jasmonate and nonradioactive ABA of uptake of radioactive ABA by the cultured cells. There is no effect of ABA or nonradioactive methyl jasmonate on uptake of radioactive methyl jasmonate by the cultured cells. It is proposed that methyl jasmonate interacts with the ABA carrier. Various models for this interaction are discussed.Abbreviations ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3-yl acetic acid  相似文献   

    10.
    11.
    Fatty acid (FA) may disturb the redox state of the cells not only by an increase in reactive oxygen species (ROS) generation but also due to a reduction in antioxidant enzyme activities. The effect of various FAs (palmitic, stearic, oleic, linoleic, gamma-linolenic and eicosapentaenoic acids (EPAs)) on Jurkat and Raji cells, (human T and B leukaemic cell lines was investigated). The following measurements were carried out: FA composition of the cells, cell proliferation and activities of catalase, glutathione peroxidase (GPx) and superoxide dismutase (SOD). The protective effect of alpha-tocopherol on cell death was also investigated. Each cell line presented a specific FA composition. All the tested FAs reduced catalase activity. The toxic effect of FA was abolished by the pre-incubation with physiological concentrations of alpha-tocopherol. The findings support the proposition that the increase in oxidative stress induced by FA partially occurs due to a reduction in catalase activity. In spite of the decrease in the enzyme activity, catalase protein and mRNA levels were not changed, suggesting a post-translational regulation.  相似文献   

    12.
    Yang  J.  Gong  Y.  Sontag  D. P.  Corbin  I.  Minuk  G. Y. 《Molecular biology reports》2018,45(5):1023-1036
    Molecular Biology Reports - Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid with anti-cancer properties. Recently, DHA packaged within low-density lipoprotein (LDL)...  相似文献   

    13.
    Progesterone 5 alpha-reductase, which catalyses the reduction of progesterone to 5 alpha-pregnane-3,20-dione, was isolated and characterized from cell cultures of Digitalis lanata (foxglove). Optimum enzyme activity was observed at pH 7.0, and the enzyme had an apparent Km value of 30 microM for its substrate progesterone. The enzyme needs NADPH as reductant, which could not be replaced by NADH. For NADPH, the apparent Km value is 130 microM. The optimum temperature was 40 degrees C; at temperatures below 45 degrees C, the product 5 alpha-pregnane-3,20-dione was reduced by a second reaction to 5 alpha-pregnan-3 beta-ol-20-one. Progesterone 5 alpha-reductase activity was not dependent on bivalent cations. In the presence of EDTA, 0.1 mM-Mn2+ had no influence on enzyme activity, whereas 0.1 mM-Ca2+, -Co2+ and -Zn2+ decreased progesterone 5 alpha-reductase activity. Only 0.1 mM-Mg2+ was slightly stimulatory. EDTA and thiol reagents such as dithiothreitol stimulate progesterone 5 alpha-reductase activity. By means of linear sucrose gradient fractionation of the cellular membranes, progesterone 5 alpha-reductase was found to be located in the endoplasmic reticulum.  相似文献   

    14.
    We investigated 3,3′,5-tri-iodo-l-thyronine transport by human erythrocytes and by `ghosts'' prepared from these cells. Uptake of tri-iodothyronine by erythrocytes at 37°C was time-dependent with a maximum reached after 60min. Tracer analysis after incubation for 1min revealed only one saturable binding site, with Km 128±19nm (mean±s.e.m.; n=7) and Vmax. 4.6±0.7pmol of tri-iodothyronine/min per 6×107 cells. After 10min incubation Km 100±16nm (n=10) was found with Vmax. 7.7±1.2pmol of tri-iodothyronine/10min per 6×107 cells. At 0°C the uptake system is still active, with Km 132±26nm and Vmax. 1.8±0.3pmol of tri-iodothyronine/10min per 6×107 cells. The Vmax. with intact cells is 5-fold greater than the Vmax. with membranes derived from the same amount of cells when uptake studies are performed in media with similar free tri-iodothyronine concentrations. This indicates that at least 80% of tri-iodothyronine taken up by the intact erythrocytes enters the cell. This saturable uptake system can be inhibited by X-ray-contrast agents in a dose-dependent fashion. (±)-Propranolol, but not atenolol, has the same effect, indicating that the membrane-stabilizing properties of (±)-propranolol are involved. Furthermore, there is no inhibition by ouabain or vanadate, which indicates that tri-iodothyronine uptake is not dependent on the activity of Na++K+-dependent adenosine triphosphatase. We have prepared erythrocyte `ghosts'', resealed after 2.5min with 0mm-, 2mm- or 4mm-ATP inside. Inclusion of ATP and integrity of the membrane of the erythrocyte `ghosts'' were verified on the basis of an ATP-concentration-dependent functioning of the Ca2+ pump. No difference was found in the uptake of tri-iodothyronine by erythrocyte `ghosts'' with or without ATP included, indicating that uptake of tri-iodothyronine is not ATP-dependent. The following conclusions are drawn. (1) Tri-iodothyronine enters human erythrocytes. (2) There is only one saturable uptake system present for tri-iodothyronine, which is neither energy (i.e. ATP)-dependent nor influenced by the absence of an Na+ gradient across the plasma membrane. This mode of uptake of tri-iodothyronine by human erythrocytes is in sharp contrast with that of rat hepatocytes, which uptake system is energy-dependent and ouabain-sensitive [Krenning, Docter, Bernard, Visser & Hennemann (1978) FEBS Lett. 91, 113–116; Krenning, Docter, Bernard, Visser & Hennemann (1980) FEBS Lett. 119, 279–282]. (3) X-ray-contrast agents inhibit tri-iodothyronine uptake by erythrocytes in a similar fashion to that by which they inhibit the uptake of tri-iodothyronine by rat hepatocytes [Krenning, Docter, Bernard, Visser & Hennemann (1982) FEBS Lett. 140, 229–233].  相似文献   

    15.
    Vitamin B6 is essential for cellular functions and growth due to its involvement in important metabolic reactions. Humans and other mammals cannot synthesize vitamin B6 and thus must obtain this micronutrient from exogenous sources via intestinal absorption. The intestine, therefore, plays a central role in maintaining and regulating normal vitamin B6 homeostasis. Due to the water-soluble nature of vitamin B6 and the demonstration that transport of other water-soluble vitamins in intestinal epithelial cells involves specialized carrier-mediated mechanisms, we hypothesized that transport of vitamin B6 in these cells is also carrier mediated in nature. To test this hypothesis, we examined pyridoxine transport in a model system for human enterocytes, the human-derived intestinal epithelial Caco-2 cells. The results showed pyridoxine uptake to be 1) linear with time for up to 10 min of incubation and to occur with minimal metabolic alteration in the transported substrate, 2) temperature and energy dependent but Na+ independent, 3) pH dependent with higher uptake at acidic compared with alkaline pHs, 4) saturable as a function of concentration (at buffer pH 5.5 but not 7.4) with an apparent Michaelis-Menten constant (Km) of 11.99 ± 1.41 µM and a maximal velocity (Vmax) of 67.63 ± 3.87 pmol · mg protein-1 · 3 min-1, 5) inhibited by pyridoxine structural analogs (at buffer pH 5.5 but not 7.4) but not by unrelated compounds, and 6) inhibited in a competitive manner by amiloride with an apparent inhibitor constant (Ki) of 0.39 mM. We also examined the possible regulation of pyridoxine uptake by specific intracellular regulatory pathways. The results showed that whereas modulators of PKC, Ca+2/calmodulin (CaM), and nitric oxide (NO)-mediated pathways had no effect on pyridoxine uptake, modulators of PKA-mediated pathway were found to cause significant reduction in pyridoxine uptake. This reduction was mediated via a significant inhibition in the Vmax, but not the apparent Km, of the pyridoxine uptake process. These results demonstrate, for the first time, the involvement of a specialized carrier-mediated mechanism for pyridoxine uptake by intestinal epithelial cells. This system is pH dependent and amiloride sensitive and appears to be under the regulation of an intracellular PKA-mediated pathway. vitamin B6; intestinal transport; transport regulation; Caco-2 cell  相似文献   

    16.
    Myoinositol uptake by four cultured mammalian cell lines   总被引:2,自引:0,他引:2  
    The uptake of myo-[2-3H]inositol by mouse neuroblastoma, human Y79 retinoblastoma, human HL60, and bovine pulmonary artery endothelial cells occurs by a saturable, Na+-dependent and partially energy-dependent mechanism. Inositol uptake by all four cell lines occurred by both a high-and low-affinity system. The kinetic parameters for the high-affinity uptake systems were similar for all four cell lines. These data suggest that all four of these diverse cell lines have similar inositol transport systems and probably rely on extracellular inositol for anabolic processes.  相似文献   

    17.
    M J Fay  A J Verlangieri 《Life sciences》1991,49(19):1377-1381
    The effects of preincubation of human T-lymphoma cells with increasing concentrations of calcium L-threonate on the uptake of L-[1-14C]ascorbic acid were examined. Calcium L-threonate (0-1,000 mg%) stimulated ascorbic acid (1.25 mg%) uptake in a dose-dependent manner. These results indicate that calcium threonate and possibly other ascorbic acid metabolites have biological activity and potential pharmacological applications.  相似文献   

    18.
    19.
    The effect of diabetic status and insulin on adipocyte plasma membrane properties and fatty acid uptake was examined. Studies with inhibitors and isolated adipocyte ghost plasma membranes indicated 9Z, 11E, 13E, 15Z-octatetraenoic acid (cis-parinaric acid) uptake was protein mediated. Cis-parinaric acid uptake was inhibited by trypsin treatment or incubation with phloretin, and competed with stearic acid. The initial rate, but not maximal uptake, of cis-parinaric acid uptake was enhanced two-fold in adipocytes from diabetic rats. Concomitantly, the structure and lipid composition of adipocyte ghost membranes was dramatically altered. However, the increased initial rate of cis-parinaric acid uptake in the diabetic adipocytes was not explained by membrane alterations or by a two-fold decrease in cytosolic adipocyte fatty acid binding protein (ALBP), unless ALBP stimulated fatty acid efflux. Thus, diabetic status dramatically altered adipocyte fatty acid uptake, plasma membrane structu re, lipid composition, and cytosolic fatty acid binding protein. (Mol Cell Biochem 167: 51-60, 1997)  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号