首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectroscopic properties of a mutant cytochrome c peroxidase, in which Asp-235 has been replaced by an asparagine residue, were examined in both nitrate and phosphate buffers between pH 4 and 10.5. The spin state of the enzyme is pH dependent, and four distinct spectroscopic species are observed in each buffer system: a predominantly high-spin Fe(III) species at pH 4, two distinct low-spin forms between pH 5 and 9, and the denatured enzyme above pH 9.3. The spectrum of the mutant enzyme at pH 4 is dependent upon specific ion effects. Increasing the pH above 5 converts the mutant enzyme to a predominantly low-spin hydroxy complex. Subsequent conversion to a second low-spin form is essentially complete at pH 7.5. The second low-spin form has the distal histidine, His-52, coordinated to the heme iron. To evaluate the effect of the changes in coordination state upon the reactivity of the enzyme, the reaction between hydrogen peroxide and the mutant enzyme was also examined as a function of pH. The reaction of CcP(MI,D235N) with peroxide is biphasic. At pH 6, the rapid phase of the reaction can be attributed to the bimolecular reaction between hydrogen peroxide and the hydroxy-ligated form of the mutant enzyme. Despite the hexacoordination of the heme iron in this form, the bimolecular rate constant is approximately 22% that of pentacoordinate wild-type yeast cytochrome c peroxidase. The bimolecular reaction of the mutant enzyme with peroxide exhibits the same pH dependence in nitrate-containing buffers that has been described for the wild-type enzyme, indicating a loss of reactivity with the protonation of a group with an apparent pKa of 5.4. This observation eliminates Asp-235 as the source for this heme-linked ionization and strengthens the hypothesis that the pKa of 5.4 is associated with His-52. The slower phase of the reaction between peroxide and the mutant enzyme saturates at high peroxide concentration and is attributed to conversion of unreactive to reactive forms of the enzyme. The fraction of enzyme which reacts via the slow phase is dependent upon both pH and specific ion effects.  相似文献   

2.
Peroxidase from soybean seed coat (SBP) has properties that makes it particularly suited for practical applications. Therefore, it is essential to know its fundamental enzymatic properties. Stopped-flow techniques were used to investigate the pH dependence of the reaction of SBP and hydrogen peroxide. The reaction is linearly dependent on hydrogen peroxide concentration at acidic and neutral pH with the second order rate constant k(1)=2.0x10(7) M(-1) s(-1), pH 4-8. From pH 9.3 to 10.2 the reaction is biphasic, a novel observation for a peroxidase at alkaline pH. A fast reaction has the characteristics of the reaction at neutral pH, and a slow reaction shows hyperbolic dependence on hydrogen peroxide concentration. At pH >10.5 only the slow reaction is seen. The shift in mechanism is coincident with the change in haem iron co-ordination to a six-coordinate low spin hydroxy ligated alkaline form. The pK(a) value for the alkaline transition was observed at 9.7+/-0.1, 9.6+/-0.1 and 9.9+/-0.2 by spectrophotometric titration, the fast phase amplitude, and decrease in the apparent second order rate constant, respectively. An acidic pK(a) at 3.2+/-0.3 was also determined from the apparent second order rate constant. The reactions of soybean peroxidase compounds I and II with veratryl alcohol at pH 2.44 give very similar second order rate constants, k(2)=(2.5+/-0.1)x10(4) M(-1) s(-1) and k(3)=(2.2+/-0.1)x10(4) M(-1) s(-1), respectively, which is unusual. The electronic absorption spectra of compounds I, II and III at pH 7.07 show characteristic bands at 400 and 651 nm (compound I), 416, 527 and 555 nm (compound II), and 414, 541 and 576 nm (compound III). No additional intermediates were observed.  相似文献   

3.
The rate of the reaction between p-nitroperoxybenzoic acid and cytochrome c peroxidase (CcP) has been investigated as a function of pH and ionic strength. The pH dependence of the reaction between CcP and peracetic acid has also been determined. The rate of the reactions are influenced by two heme-linked ionizations in the protein. The enzyme is active when His-52 (pK(a) 3.8 +/- 0.1) is unprotonated and an unknown group with a pK(a) of 9.8 +/- 0.1 is protonated. The bimolecular rate constant for the reaction between peracetic acid and CcP and between p-nitroperoxybenzoic acid and CcP are (1.8 +/- 0.1) x 10(7) and (1.6 +/- 0.2) x 10(7) M(-)(1) s(-)(1), respectively. These rates are about 60% slower than the reaction between hydrogen peroxide and CcP. A critical comparison of the pH dependence of the reactions of hydrogen peroxide, peracetic acid, and p-nitroperoxybenzoic acid with CcP provides evidence that both the neutral and anionic forms of the two peroxyacids react directly with the enzyme. The peracetate and p-nitroperoxybenzoate anions react with CcP with rates of (1.5 +/- 0.1) x 10(6) and (1.6 +/- 0.2) x 10(6) M(-)(1) s(-)(1), respectively, about 10 times slower than the neutral peroxyacids. These data indicate that CcP discriminates between the neutral peroxyacids and their negatively charged ions. However, the apparent bimolecular rate constant for reaction between p-nitroperoxybenzoate and CcP is independent of ionic strength in the range of 0.01-1.0 M, suggesting that electrostatic repulsion between the anion and CcP is not the cause of the lower reactivity for the peroxybenzoate anion. The data are consistent with the hypothesis that the rate-limiting step for the oxidation of CcP to compound I by both neutral peroxyacid and the negatively charged peroxide ion is diffusion of the reactants through the protein matrix, from the surface of the protein to the distal heme pocket.  相似文献   

4.
A kinetic study of the reaction of two turnip peroxidases (P1 and P7) with hydrogen peroxide to form the primary oxidized compound (compound I) has been carried out over the pH range from 2.4 to 10.8. In the neutral and acidic pH regions, the rates depend linearly on hydrogen peroxide concentration whereas at alkaline pH values the rates display saturation kinetics. A compound is made with the cyanide binding reaction to peroxidases since the two reactions are influenced in the same manner by ionization of groups on the native enzymes. Two different ionization processes of peroxidase P1 with pKa values of 3.9 and 10 are required to explain the rate pH profile for the reaction with H2O2. Protonation of the former group and ionization of the latter causes a decrease in the rate of reaction of the enzyme with H2O2. In the case of peroxidase P7 a minimum model involves three ionizable groups with pKa values of 2.5, 4 and 9. Protonation of the former two groups and ionization of the latter lowers the reaction rate. In the pH-independent region, the rate of formation of compound I was measured as a function of temperature. From the Arhenius plots the activation energy for the reaction was calculated to be 2.9 +/- 0.1 kcal/mol for P1 and 5.4 +/- 0.3 kcal/mol for P7. However, the rates are independent of viscosity in glycerol-water mixtures up to 30% glycerol.  相似文献   

5.
The redox potential of the ferrous/ferric couple in cytochrome c peroxidase has been measured as a function of pH between pH 4.5 and 8. The redox potential decreases linearly as a function of pH between pH 4.5 and 7 with a slope of --57 +/- 2 mV per pH unit. Above pH 7, there is a positive inflection in the midpoint potential versus pH plot attributed to an ionizable group in the ferrous enzyme with pKa of 7.6 +/- 0.1. The midpoint potential at pH 7 is--0.194 V relative to the standard hydrogen electrode at 25 degree C. Ferrocytochrome c peroxidase undergoes a reversible spectral transition as a function of pH. Below pH 7, the enzyme has a spectrum typical of high spin ferroheme proteins while above pH 8, the spectrum is typical of low spin ferroheme proteins. The transition is caused by a co-operative, two proton ionization with an apparent pKa of 7.7 +/- 0.2. Two other single proton ionizations cause minor perturbations to the spectrum of ferrocytochrome c peroxidase. One has a pKa of 5.7 +/- 0.2 while the second has a pKa of 9.4 +/- 0.2.  相似文献   

6.
Foshay MC  Vitello LB  Erman JE 《Biochemistry》2004,43(17):5065-5072
Replacement of the distal histidine, His-52, in cytochrome c peroxidase (CcP) with a lysine residue produces a mutant cytochrome c peroxidase, CcP(H52K), with spectral and kinetic properties significantly altered compared to those of the wild-type enzyme. Three spectroscopically distinct forms of the enzyme are observed between pH 4.0 and 8.0 with two additional forms, thought to be partially denatured forms, making contributions to the observed spectra at the pH extremes. CcP(H52K) exists in at least three, slowly interconverting conformational states over most of the pH range that was investigated. The side chain epsilon-amino group of Lys-52 has an apparent pK(a) of 6.4 +/- 0.2, and the protonation state of Lys-52 affects the spectral properties of the enzyme and the reactions with both hydrogen peroxide and HCN. In its unprotonated form, Lys-52 acts as a base catalyst facilitating the reactions of both hydrogen peroxide and HCN with CcP(H52K). The major form of CcP(H52K) reacts with hydrogen peroxide with a rate approximately 50 times slower than that of wild-type CcP but reacts with HCN approximately 3 times faster than does the wild-type enzyme. The major form of the mutant enzyme has a higher affinity for HCN than does native CcP.  相似文献   

7.
S Loo  J E Erman 《Biochemistry》1975,14(15):3467-3470
The rate of the reaction between cytochrome c peroxidase and hydrogen peroxide was investigated using the stopped-flow technique. The apparent bimolecular rate constant was determined between pH 3.3 and pH 11 as a function of ionic strength. The pH dependence of the apparent bimolecular rate constant can be explained by assuming that two ionizable groups on the enzyme strongly influence the rate of the reaction. At 0.1 M ionic strength, a group with a pKa of 5.5 must be unprotonated and a group with a pKa of 9.8 must be protonated for the enzyme to react rapidly with hydrogen peroxide. The apparent acid dissociation constants depend upon the ionic strength. The true bimolecular rate constant has a value of (4.5 +/- 0.3) X 10(7) M-1 sec-1 and is independent of ionic strength.  相似文献   

8.
The pH dependence of the oxidation-state marker line of hemoproteins is investigated in cytochrome c peroxidase with Raman difference spectroscopy. The frequency is sensitive to ionization of a group on the protein that regulates catalytic activity of the resting ferriheme enzyme. The oxidation-state marker line shows a transition with pK of 5.5 in good agreement with other spectroscopic measurements and kinetic measurements of binding of peroxide, and other ligands to the native enzyme. The shift of 0.8 cm-1 to higher frequency at pH 4.5 relative to the pH 6.4 value is interpreted in terms of a substantial decrease in pi-electron density in the porphyrin ring. Charge density in the pi-system is highest at maximal activity, as would be expected if donor-acceptor interactions with residues of the protein stabilize the oxidized Fe(IV) reaction intermediate. Evidence of additional heme-linked ionizations with pK values near 7.5 is found; this alkaline transition involves deprotonation of several groups of the protein, conversion of iron from high to low spin, and, possibly, denaturation of the protein.  相似文献   

9.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

10.
Here the cytochrome c peroxidase (CcP) from Nitrosomonas europaea is examined using the technique of catalytic protein film voltammetry. Submonolayers of the bacterial diheme enzyme at a pyrolytic graphite edge electrode give catalytic, reductive signals in the presence of the substrate hydrogen peroxide. The resulting waveshapes indicate that CcP is bound non-covalently in a highly active configuration. The native enzyme has been shown to possess two heme groups of low and high potential (L and H, -260 and +450 mV versus hydrogen, respectively), and here we find that the catalytic waves of the N. europaea enzyme have a midpoint potential of >500 mV and a shape that corresponds to a 1-electron process. The signals increase in magnitude with hydrogen peroxide concentration, revealing Michaelis-Menten kinetics and K(m) = 55 microm. The midpoint potentials shift with substrate concentration, indicating the electrochemically active species observed in our data corresponds to a catalytic species. The potentials also shift with respect to pH, and the pH dependence is interpreted in terms of a two pK(a) model for proton binding. Together the data show that the electrochemistry of the N. europaea cytochrome c peroxidase is unlike other peroxidases studied to date, including other bacterial enzymes. This is discussed in terms of a catalytic model for the N. europaea enzyme and compared with other cytochrome c peroxidases.  相似文献   

11.
L B Vitello  M Huang  J E Erman 《Biochemistry》1990,29(18):4283-4288
The effect of long-term storage on the electronic absorption spectrum and the kinetic properties of cytochrome c peroxidase has been investigated. No detectable differences were observed between freshly isolated enzyme and enzyme stored below -20 degrees C, in the crystalline state, for up to 41 months. The electronic absorption spectrum and the rate of the enzyme-hydrogen peroxide reaction are essentially independent of pH in 0.1 M potassium phosphate buffers for both fresh and stored enzyme. In buffers containing KNO3, the absorption spectrum and the kinetic properties of both fresh and stored enzyme vary with pH, consistent with the titration of an ionizable group with an apparent pKa of 5.5 +/- 0.1. The differences between phosphate- and nitrate-containing buffers are attributed to specific ion effects. In KNO3-containing buffers, the high-pH form of the enzyme reacts rapidly with hydrogen peroxide while the low-pH form is unreactive. Evidence is presented which indicates that both the low-pH and high-pH forms of the enzyme in KNO3-containing buffers are 5-coordinate, high-spin Fe(III) species.  相似文献   

12.
A basic heme peroxidase isoenzyme (AKPC) has been purified to homogeneity from artichoke flowers (Cynara scolymus L.). The enzyme was shown to be a monomeric glycoprotein, M(r)=42300+/-1000, (mean+/-S.D.) with an isoelectric point >9. The native enzyme exhibits a typical peroxidase ultraviolet-visible spectrum with a Soret peak at 404 nm (epsilon=137,000+/-3000 M(-1) cm(-1)) and a Reinheitzahl (Rz) value (A(404nm)/A(280nm)) of 3.8+/-0.2. The ultraviolet-visible absorption spectra of compounds I, II and III were typical of class III plant peroxidases but unlike horseradish peroxidase isoenzyme C, compound I was unstable. Resonance Raman and UV-Vis spectra of the ferric form show that between pH 5.0 and 7.0 the protein is mainly 6 coordinate high spin with a water molecule as the sixth ligand. The substrate-specificity of AKPC is characteristic of class III (guaiacol-type) peroxidases with chlorogenic and caffeic acids, that are abundant in artichoke flowers, as particularly good substrates at pH 4.5. Ferric AKPC reacts with hydrogen peroxide to yield compound I with a second-order rate constant (k(+1)) of 7.4 x 10(5) M(-1) s(-1) which is significantly slower than that reported for most other class III peroxidases. The reaction of ferric and ferrous AKPC with nitric oxide showed a potential use of this enzyme for quantitative spectrophotometric determination of NO and as a component of novel NO sensitive electrodes.  相似文献   

13.
Cytochrome c peroxidase undergoes a complex series of transitions between pH 8 and 14. Seven distinct spectral transitions occur between 4 ms and 24 h after exposure to alkaline pH. The fastest transition occurs within the mixing time of a stopped-flow instrument and converts the native high-spin ferric form of the enzyme to a low-spin form which may be the hydroxy complex of the enzyme. An apparent pKa of 9.7 +/- 0.2 relates the native and initial alkaline form of the enzyme. Three other low-spin enzyme forms are evident from the experimental data prior to denaturation of the enzyme and complete exposure of the heme to the solvent. The final denaturation process occurs with an apparent pKa of 10.3 +/- 0.3.  相似文献   

14.
E Stellwagen  J Babul 《Biochemistry》1975,14(23):5135-5140
Increasing concentrations of chloride were found to increase the resolution between two visible absorbance spectral transitions associated with acidification of ferricytochrome c. Analysis of a variety of spectral and viscosity measurements indicates that protonation of a single group having an apparent pK of 2.1 +/- 0.2 and an intrinsic pK of about 5.3 displaces the methionine ligand without significantly perturbing the native globular conformation. Analysis of methylated ferricytochrome c suggests that protonation of a carboxylate ion, most likely a heme propionate residue, is responsible for displacement of the methionine ligand. Addition of a proton to a second group having an apparent pK of 1.2 +/- 0.1 displaces the histidine ligand and unfolds the protein from a globular conformation into a random coil. It is most likely that the second protonation occurs on the imidazole ring of the histidine ligand itself. Chloride is proposed to perturb these transitions by ligation in the fifth coordination position of the heme ion. Such ligation stabilizes a globular conformation of ferricytochrome c at pH 0.0 and 25 degrees.  相似文献   

15.
Horseradish peroxidase was modified by phthalic anhydride and glucosamine hydrochloride. The thermostabilities and removal efficiencies of phenolics by native and modified HRP were assayed. The chemical modification of horseradish peroxidase increased their thermostability (about 10- and 9-fold, respectively) and in turn also increased the removal efficiency of phenolics. The quantitative relationships between removal efficiency of phenol and reaction conditions were also investigated using modified enzyme. The optimum pH for phenol removal is 9.0 for both native and modified forms of the enzyme. Both modified enzyme could suffer from higher temperature than native enzyme in phenol removal reaction. The optimum molar ratio of hydrogen peroxide to phenol was 2.0. The phthalic anhydride modified enzyme required lower dose of enzyme than native horseradish peroxidase to obtain the same removal efficiency. Both modified horseradish peroxidase show greater affinity and specificity of phenol.  相似文献   

16.
K L Kim  D S Kang  L B Vitello  J E Erman 《Biochemistry》1990,29(39):9150-9159
The steady-state kinetics of the cytochrome c peroxidase catalyzed oxidation of horse heart ferrocytochrome c by hydrogen peroxide have been studied at both pH 7.0 and pH 7.5 as a function of ionic strength. Plots of the initial velocity versus hydrogen peroxide concentration at fixed cytochrome c are hyperbolic. The limiting slope at low hydrogen peroxide give apparent bimolecular rate constants for the cytochrome c peroxidase-hydrogen peroxide reaction identical with those determined directly by stopped-flow techniques. Plots of the initial velocity versus cytochrome c concentration at saturating hydrogen peroxide (200 microM) are nonhyperbolic. The rate expression requires squared terms in cytochrome c concentration. The maximum turnover rate of the enzyme is independent of ionic strength, with values of 470 +/- 50 s-1 and 290 +/- 30 s-1 at pH 7.0 and 7.5, respectively. The limiting slope of velocity versus cytochrome c concentration plots provides a lower limit for the association rate constant between cytochrome c and the oxidized intermediates of cytochrome c peroxidase. The limiting slope varies from 10(6) M-1 s-1 at 300 mM ionic strength to 10(8) M-1 s-1 at 20 mM ionic strength and extrapolates to 5 x 10(8) M-1 s-1 at zero ionic strength. The data are discussed in terms of both a two-binding-site mechanism and a single-binding-site, multiple-pathway mechanism.  相似文献   

17.
A basic heme peroxidase has been isolated from cucumber (Cucumis sativus) peelings and characterized through electronic and (1)H NMR spectra from pH 3 to 11. The protein, as isolated, contains a high-spin ferriheme which in the low pH region is sensitive to two acid-base equilibria with apparent pK(a) values of approximately 5 and 3.6, assigned to the distal histidine and to a heme propionate, respectively. At high pH, a new low-spin species develops with an apparent pK(a) of 11, likely due to the binding of an hydroxide ion to the sixth (axial) coordination position of the Fe(III). A number of acid-base equilibria involving heme propionates and residues in the distal cavity also affect the binding of inorganic anions such as cyanide, azide, and fluoride to the ferriheme, as well as the catalytic activity. The reduction potentials of the native protein and of its cyanide derivative, determined through UV-Vis spectroelectrochemistry, result to be -0.320+/-0.015 and -0.412+/-0.010V, respectively. Overall, the reactivity of this protein parallels those of other plant peroxidases, especially horseradish peroxidase. However, some differences exist in the acid-base equilibria affecting its reactivity and in the reduction potential, likely as a result of small structural differences in the heme distal and proximal cavities.  相似文献   

18.
The bimolecular reaction between Escherichia coli-produced cytochrome-c peroxidase (CcP(MI)) and hydrogen peroxide is identical to that of native yeast cytochrome-c peroxidase (CcP) and hydrogen peroxide in the neutral pH region. Both enzymes have pH-independent bimolecular rate constants of 46 microM-1.s-1 for the reaction with hydrogen peroxide. A second mutant enzyme, E. coli-produced cytochrome-c peroxidase mutant with phenylalanine at position 191 (CcP(MI, F191)), has a pH-independent bimolecular rate constant for the hydrogen peroxide reaction of 65 microM-1.s-1, 40% larger than for CcP or CcP(MI). The initial peroxide-oxidation product of CcP(MI, F191) is an oxyferryl porphyrin pi-cation radical intermediate in contrast to the oxyferryl amino-acid radical intermediate formed upon oxidation of CcP or CcP(MI) with hydrogen peroxide. The reactions of all three enzymes with hydrogen peroxide are pH-dependent in KNO3-containing buffers. The reactions are influenced by an ionizable group, which has an apparent pKa of 5.4 in all three enzymes. The enzymes react with hydrogen peroxide when the ionizable group is unprotonated. Both CcP(MI) and CcP(MI, F191) have slightly smaller pH stability regions compared to CcP as assessed by the hydrogen peroxide titer and spectral analysis. The alteration in structural stability must be attributed to differences in the primary sequence between CcP and CcP(MI) which occur at positions -2, -1, 53 and 152.  相似文献   

19.
Protease activity present in aerobically grown cells of Pseudomonas perfectomarina, protease apparently copurified with cytochrome c-552, and trypsin achieved a limited proteolysis of the diheme cytochrome c-552. That partial lysis conferred cytochrome c peroxidase activity upon cytochrome c-552. The removal of a 4000-Da peptide explains the structural changes in the cytochrome c-552 molecule that resulted in the appearance of both cytochrome c peroxidase activity (with optimum activity at pH 8.6) and a high-spin heme iron. The oxidized form of the modified cytochrome c-552 bound cyanide to the high-spin ferric heme with a rate constant of (2.1 +/- 0.1) X 10(3) M-1 s-1. The dissociation constant was 11.2 microM. Whereas the intact cytochrome c-552 molecule can be half-reduced by ascorbate, the cytochrome c peroxidase was not reducible by ascorbate, NADH, ferrocyanide, or reduced azurin. Dithionite reduced the intact protein completely but only half-reduced the modified form. The apparent second-order rate constant for dithionite reduction was (7.1 +/- 0.1) X 10(2) M-1 s-1 for the intact protein and (2.2 +/- 0.1) X 10(3) M-1 s-1 for the modified form. In contrast with other diheme cytochrome c peroxidases, reduction of the low-spin heme was not necessary to permit ligand binding by the high-spin heme iron.  相似文献   

20.
The reaction of cytochrome c oxidase with hydrogen peroxide has been of great value in generating and characterizing oxygenated species of the enzyme that are identical or similar to those formed during turnover of the enzyme with dioxygen. Most previous studies have utilized relatively low peroxide concentrations (millimolar range). In the current work, these studies have been extended to the examination of the kinetics of the single turnover of the fully reduced enzyme using much higher concentrations of peroxide to avoid limitations by the bimolecular reaction. The flow-flash method is used, in which laser photolysis of the CO adduct of the fully reduced enzyme initiates the reaction following rapid mixing of the enzyme with peroxide, and the reaction is monitored by observing the absorbance changes due to the heme components of the enzyme. The following reaction sequence is deduced from the data. (1) The initial product of the reaction appears to be heme a(3) oxoferryl (Fe(4+)=O(2)(-) + H(2)O). Since the conversion of ferrous to ferryl heme a(3) (Fe(2+) to Fe(4+)) is sufficient for this reaction, presumably Cu(B) remains reduced in the product, along with Cu(A) and heme a. (2) The second phase of the reaction is an internal rearrangement of electrons and protons in which the heme a(3) oxoferryl is reduced to ferric hydroxide (Fe(3+)OH(-)). In about 40% of the population, the electron comes from heme a, and in the remaining 60% of the population, Cu(B) is oxidized. This step has a time constant of about 65 micros. (3) The third apparent phase of the reaction includes two parallel reactions. The population of the enzyme with an electron in the binuclear center reacts with a second molecule of peroxide, forming compound F. The population of the enzyme with the two electrons on heme a and Cu(A) must first transfer an electron to the binuclear center, followed by reaction with a second molecule of peroxide, also yielding compound F. In each of these reaction pathways, the reaction time is 100-200 micros, i.e., much faster than the rate of reaction of peroxide with the fully oxidized enzyme. Thus, hydrogen peroxide is an efficient trap for a single electron in the binuclear center. (4) Compound F is then reduced by the final available electron, again from heme a, at the same rate as observed for the reduction of compound F formed during the reaction of the fully reduced oxidase with dioxygen. The product is the fully oxidized enzyme (heme a(3) Fe(3+)OH(-)), which reacts with a third molecule of hydrogen peroxide, forming compound P. The rate of this final reaction step saturates at high concentrations of peroxide (V(max) = 250 s(-)(1), K(m) = 350 mM). The data indicate a reaction mechanism for the steady-state peroxidase activity of the enzyme which, at pH 7.5, proceeds via the single-electron reduction of the binuclear center followed by reaction with peroxide to form compound F directly, without forming compound P. Peroxide is an efficient trap for the one-electron-reduced state of the binuclear center. The results also suggest that the reaction of hydrogen peroxide to the fully oxidized enzyme may be limited by the presence of hydroxide associated with the heme a(3) ferric species. The reaction of hydrogen peroxide with heme a(3) is very substantially accelerated by the availability of an electron on heme a, which is presumably transferred to the binuclear center concomitant with a proton that can convert the hydroxide to water, which is readily displaced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号