首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The human myoglobin (Mb) sequence is similar to other mammalian Mb sequences, except for a unique cysteine at position 110. Reaction of wild-type recombinant human Mb, the C110A variant of human Mb, or horse heart Mb with H(2)O(2) (protein/H(2)O(2) = 1:1.2 mol/mol) resulted in formation of tryptophan peroxyl (Trp-OO( small middle dot)) and tyrosine phenoxyl radicals as detected by EPR spectroscopy at 77 K. For wild-type human Mb, a second radical (g approximately 2. 036) was detected after decay of Trp-OO( small middle dot) that was not observed for the C110A variant or horse heart Mb. When the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was included in the reaction mixture at protein/DMPO ratios /=1:25 mol/mol, DMPO-tyrosyl radical adducts were detected. Mass spectrometry of wild-type human Mb following reaction with H(2)O(2) demonstrated the formation of a homodimer (mass of 34,107 +/- 5 atomic mass units) sensitive to reducing conditions. The human Mb C110A variant afforded no dimer under identical conditions. Together, these data indicate that reaction of wild-type human Mb and H(2)O(2) differs from the corresponding reaction of other myoglobin species by formation of thiyl radicals that lead to a homodimer through intermolecular disulfide bond formation.  相似文献   

2.
Pyrimidine base-derived radical spin adducts were detected in reaction mixtures containing pyrimidine bases, glutathione, and alloxan by the ESR spin trapping technique with a spin trap, alpha-phenyl-N-tert-butyl nitrone (PBN). Pyrimidine nucleoside- and nucleotide-, and ribose- and deoxyribose-derived radical spin adducts of PBN were also observed. However, purine base- and nucleoside-derived radical spin adducts of PBN were not detected. A cytosine-derived radical spin adduct of PBN was not generated under anaerobic conditions. Catalase and mannitol inhibited the formation of the cytosine-derived radical spin adduct of PBN but superoxide dismutase (SOD) did not. EDTA stimulated it and desferrioxamine suppressed it nearly completely. From these results it is presumed that the hydroxyl radical is involved in the formation of the cytosine-derived radical spin adduct of PBN generated by alloxan.  相似文献   

3.
We report in vivo evidence for fatty acid-derived free radical metabolite formation in bile of rats dosed with spin traps and oxidized polyunsaturated fatty acids (PUFA). When rats were dosed with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and oxidized PUFA, the DMPO thiyl radical adduct was formed due to a reaction between oxidized PUFA and/or its metabolites with biliary glutathione. In vitro experiments were performed to determine the conditions necessary for the elimination of radical adduct formation by ex vivo reactions. Fatty acid-derived radical adducts of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) were detected in vivo in bile samples collected into a mixture of iodoacetamide, desferrioxamine, and glutathione peroxidase. Upon the administration of oxidized 13C-algal fatty acids and 4-POBN, the EPR spectrum of the radical adducts present in the bile exhibited hyperfine couplings due to 13C. Our data demonstrate that the carbon-centered radical adducts observed in in vivo experiments are unequivocally derived from oxidized PUFA. This in vivo evidence for PUFA-derived free radical formation supports the proposal that processes involving free radicals may be the molecular basis for the previously described cytotoxicity of dietary oxidized PUFA.  相似文献   

4.
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

5.
Thiyl radicals are shown to be readily trapped with the spin traps 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (TMPO) giving characteristic spin adducts with hyperfine coupling constants aN 1.52-1.58, aH 1.52-1.80 mT, and g values in the range 2.0065-2.0067 for the DMPO adducts and aN 1.50-1.56, aH 1.70-1.92 mT, g 20049-2.0051 for the TMPO adducts. Kinetic data obtained from pulse radiolysis studies show that, in general, thiyl radicals react rapidly with these spin traps with rate constants of the order of 10(7)-10(8) dm3 mol-1 s-1. The tetramethylated spin trap TMPO though giving slightly less intense electron spin resonance (ESR) spectra, produces longer lived adducts, and is suggested to be of greater utility due to the more characteristic nature of the coupling constants of the observed adducts; reaction of certain thiyl radicals with DMPO produces adducts which are superficially similar to the hydroxyl radical adduct to the same trap.  相似文献   

6.
A novel cyclic nitrone spin trap, 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) as a pure white solid has been synthesized for the first time. BMPO offers several advantages over the existing spin traps in the detection and characterization of thiyl radicals, hydroxyl radicals, and superoxide anions in biological systems. The corresponding BMPO adducts exhibit distinct and characteristic electron spin resonance (ESR) spectral patterns. Unlike the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-derived superoxide adduct, the BMPO superoxide adduct does not non-enzymatically decompose to the BMPO hydroxyl adduct. This feature is clearly perceived as a definite advantage of BMPO in its biological applications. In addition, the ESR spectrum of the BMPO glutathionyl adduct (BMPO/*SG) does not fully overlap with the spectrum of its hydroxyl adduct. This spectral feature is again distinctly different from that of DMPO because the ESR spectral lines of DMPO glutathionyl and hydroxyl radical adducts largely overlap. Finally, the ESR spectra of BMPO-derived adducts exhibit a much higher signal-to-noise ratio in biological systems. These favorable chemical and spectroscopic features make BMPO ideal for the detection of superoxide anions, hydroxyl and thiyl radicals in biochemical oxidation and reduction.  相似文献   

7.
Aerobic incubations of the Tritrichomonas foetus hydrogenosomal fraction containing pyruvate, CoA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) gave spectra of two radical adducts. One was a carbon-centered radical adduct of DMPO. This radical was centered at C-3 of pyruvate as determined in experiments using [13C]pyruvate. The other radical detected was identified as the CoA radical adduct of DMPO by comparison with an adduct obtained by incubating CoA with DMPO, H2O2 and horseradish peroxidase. Deletion of CoA led to an increased stability of the carbon-centered radical adduct of DMPO, disappearance of the thiyl radical adduct of DMPO, and appearance of a hydroxyl radical adduct of DMPO. Superoxide dismutase suppressed the appearance of the DMPO-hydroxyl radical adduct but did not have any inhibitory effect on the appearance of the other adducts. Catalase had no significant effect on any of the adducts. Addition of pyruvate to these hydrogenosomal preparations stimulated oxygen consumption. Addition of CoA led to a further increase in the rate of O2 uptake but had no effect in the absence of pyruvate. The formation of two substrate free radicals as intermediates in the generation of acetyl-CoA represents a novel mechanism for this enzymatic reaction and indicates that the pyruvate:ferredoxin oxidoreductase from T. foetus differs significantly from the pyridine nucleotide-dependent pyruvate dehydrogenase complex of other eukaryotic cells in its catalytic mechanism.  相似文献   

8.
《Free radical research》2013,47(4):213-222
Metabolism of ethanol to 1-hydroxyethyl radicals by rat liver microsomes was studied with three nitrone spin trapping agents (POBN, PBN, and DMPO) under essentially comparable conditions. The data indicate that POBN was the superior spin trapping agent for 1-hydroxyethyl radicals, and that DMPO was least efficient. Addition of deferoxamine completely prevented detection of 1-hydroxyethyl radicals with PBN or DMPO, but caused only 50% decrease in EPR signals when POBN was the spin trap. However, superoxide dismutase only decreased 1-hydroxyethyl radical formation when POBN was the spin trap. Other experiments demonstrated that POBN was the most effective of these nitrones for reduction of Fe(III) in aqueous solutions. Furthermore, 1-hydroxyethyl radical adducts were formed when POBN was added to mixtures of ethanol, phosphate buffer, POBN and FeCl3, but this effect did not occur with either PBN or DMPO. Thus, these data indicate that undesirable effects of POBN on iron chemistry may influence results of spin trapping experiments, and complicate interpretation of the resulting data.  相似文献   

9.
The hydroxyl radical adducts of 5, 5 dimethyl-1-pyrolline-N-oxide (DMPO) and 3, 3,5, 5 tetramethyl-1-pyrolline-N-oxide (TMPO) formed in the presence of hydrogen peroxide and Fe are normally quite stable, but in the presence of 5-20 micromolar myoglobin their ESR signals decay rapidly. This decay probably reflects further oxidation of the adduct to nonparamgnetic products.

The ESR signal of the hydroxyl radical adduct of 1-alpha-phenyl-tert-butyl nitrone (PBN) formed under similar conditions is subject to non-heme dependent attenuation, possibly via hydroxyl radical scavenging, but not to heme dependent decay. Hydrogen peroxide readily converts myoglobin to its ferryl (FeIV) derivative, and this centre may be responsible for the oxidation of the DMPO and TMPO adducts. The different behaviour of PBN may be due to differences in susceptibility to ferrylmyoglobin mediated oxidation, or to steric differences controlling access to the heme pocket of myoglobin, and is relevant to the choice of spin trap for biological experiments aimed at detecting hydroxyl radicals in the presence of myoglobin or other heme proteins.  相似文献   

10.
We have proposed, using styrene as a model, a new mechanism for the formation of glutathione conjugates that is independent of epoxide formation but dependent on the oxidation of glutathione to a thiyl radical by peroxidases such as prostaglandin H synthase or horseradish peroxidase. The thiyl radical reacts with styrene to yield a carbon-centered radical which subsequently reacts with molecular oxygen to give the styrene-glutathione conjugate. We have used electron spin resonance spin trapping techniques to detect the proposed free radical intermediates. A styrene carbon-centered radical was trapped using the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and t-nitrosobutane. The position of the carbon-centered radical was confirmed to be at carbon 7 by the use of specific 2H-labeled styrenes. The addition of the spin trap DMPO inhibited both the utilization of molecular oxygen and the formation of styrene-glutathione conjugates. Under anaerobic conditions additional styrene-glutathione conjugates were formed, one of which was identified by fast atom bombardment mass spectrometry as S-(2-phenyl)ethylglutathione. The glutathione thiyl radical intermediate was observed by spin trapping with DMPO. These results support the proposed free radical-mediated formation of styrene-glutathione conjugates by peroxidase enzymes.  相似文献   

11.
Summary

Photo-oxidation of bovine serum albumin (BSA) by porphyrins produces protein-centred radicals that can be spin trapped by 3, 5-dibromo-4-nitrosobenzenesulphonic acid (DBNBS) and 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO). In the case of DMPO, a thiyl radical from the Cys-34 residue is trapped, whereas with DBNBS signals from both this thiyl and tertiary carbon-centred species are observed. However, specific chemical modification of the Cys-34 residue, in combination with dual-isotope spin-trapping techniques, shows that the signal assigned to the Cys-34 thiyl adduct with DBNBS is a nitroxide artefact resulting from sequential (non-radical) nucleophilic addition and oxidation. In contrast, both the Cys-34 thiyl DMPO adduct and the tertiary carbon-centred DBNBS adducts result from genuine spintrapping. This study shows that such artefacts can be detected—even with anisotropic EPR spectra—through the use of appropriately substituted spin-traps, and that nitroso spin-traps need to be employed with great care in systems containing free thiol groups.  相似文献   

12.
We report here the application of the electron spin resonance technique to detect free radicals formed by the hydroperoxidase activity of prostaglandin H synthase in cells. Studies were done using keratinocytes obtained from hairless mice. These cells can be prepared in large number and possess significant prostaglandin H synthase activity. Initial attempts to directly detect free radical metabolites of several amines in cells were unsuccessful. A technique was developed based on the ability of some free radicals formed by prostaglandin hydroperoxidase to oxidize reduced glutathione (GSH) to a thiyl radical, which was trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Phenol and aminopyrine are excellent hydroperoxidase substrates for this purpose and thus were used for all further experiments. Using this approach we detected the DMPO/GS.thiyl radical adduct catalyzed by cellular prostaglandin hydroperoxidase. The formation of the radical was dependent on the addition of substrate, inhibited by indomethacin, and supported by either exogenous arachidonic acid or endogenous arachidonic acid released from phospholipid stores by Ca2+ ionophore A-23187. The addition of GSH significantly increased the intracellular GSH concentration and concomitantly stimulated the formation of the DMPO/GS.thiyl radical adduct. Phenol, but not aminopyrine, enhanced thiyl radical adduct formation and prostaglandin formation with keratinocytes while both cofactors were equally effective in incubations containing microsomes prepared from keratinocytes. These results suggest that prostaglandin hydroperoxidase-dependent co-oxidation of chemicals can result in the intracellular formation of free radical metabolites.  相似文献   

13.
Evaluation of DEPMPO as a spin trapping agent in biological systems   总被引:5,自引:0,他引:5  
Cellular toxicity, pharmacokinetics, and the in vitro and in vivo stability of the SO3*- spin adduct of the spin trap, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-n-oxide (DEPMPO), was investigated, and the results were compared with those of the widely used spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Similar to DMPO, DEPMPO was quickly taken up (<15 min) after intraperitoneal injection, and distributed evenly in the liver, heart, and blood of the mice. In the presence of ascorbate the in vitro stability of the adduct DEPMPO/SO3*- was 7 times better than DMPO/SO3*-. Under in vivo conditions, the spin adduct DEPMPO/SO3*- was 2-4 times more stable than DMPO/ SO3*-, depending on the route of administration of the adducts. Using a low frequency EPR spectrometer, we were able to observe the spin trapped SO3*- radical both with DMPO and DEPMPO directly in the intact mouse. DEPMPO had a detectable spin adduct signal at a concentration as low as 1 mM, as compared to 5 mM for DMPO. We conclude that DEPMPO is potentially a good candidate for trapping radicals in functioning biological systems, and represents an improvement over the commonly used trap DMPO.  相似文献   

14.
Complex I is a critical site of O(2)(?-) production and the major host of reactive protein thiols in mitochondria. In response to oxidative stress, complex I protein thiols at the 51- and 75-kDa subunits are reversibly S-glutathionylated. The mechanism of complex I S-glutathionylation is mainly obtained from insight into GSSG-mediated thiol-disulfide exchange, which would require a dramatic decline in the GSH/GSSG ratio. Intrinsic complex I S-glutathionylation can be detected in the rat heart at a relatively high GSH/GSSG ratio (J. Chen et al., J. Biol. Chem. 285:3168-3180, 2010). Thus, we hypothesized that reactive thiyl radical is more likely to mediate protein S-glutathionylation of complex I. Here we employed immuno-spin trapping and tandem mass spectrometry (LC/MS/MS) to test the hypothesis in the 75-kDa subunit from S-glutathionylated complex I. Under the conditions of O(2)(?-) production in the presence of GSH, we detected complex I S-glutathionylation at Cys-226, Cys-367, and Cys-727 of the 75-kDa subunit. Addition of a radical trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), significantly decreased complex I S-glutathionylation and subsequently increased the protein radical adduct of complex I-DMPO as detected by immunoblotting using an anti-DMPO antibody. LC/MS/MS analysis indicated that Cys-226, Cys-554, and Cys-727 were involved in DMPO binding, confirming that formation of the complex I thiyl radical mediates S-glutathionylation. LC/MS/MS analysis also showed that Cys-554 and Cys-727 were S-sulfonated under conditions of O(2)(?-) generation in the absence of DMPO. In myocytes (HL-1 cell line) treated with menadione to trigger mitochondrial O(2)(?-) generation, complex I protein radical and S-glutathionylation were increased. Thus mediation of complex I S-glutathionylation by the protein thiyl radical provides a unique pathway for the redox regulation of mitochondrial function.  相似文献   

15.
To obtain the strongest possible free radical spin adduct signal using the electron paramagnetic resonance spectroscopy-spin trapping technique, it is desirable to load an animal with the highest dose of spin trap possible. One hundred and twenty six male Sprague-Dawley rats were used to establish the toxic dose range for PBN (-phenyl N-tert butyl nitrone) and 18 other similar spin traps. The lethal dose of PBN was found to be approximately 100 mg/100 g BW (0.564 mmol/100 g). The 18 other compounds were then tested, and their toxicities were gauged in terms of molar equivalents to PBN. Of these spin traps, DMPO (5,5-dimethyl-1-pyrroline-N-oxide) was found to be the least toxic (no toxic signs at twice the lethal dose for PBN) while 2,6-difluoro-PBN and M4PO (3,3,5,5-tetramethyl-1-pyrroline-N-oxide) were the most toxic, both causing death at one eighth the PBN-equivalent lethal dose. Nine of the 18 nitrones appeared non-toxic at the 0.25 PBN-equivalent lethal dose level.  相似文献   

16.
The radical scavenger 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO(*)) and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were used in conjunction with mass spectrometry to identify the protein-based radical sites of the H(2)O(2)-tolerant ascorbate peroxidase (APX) of the red alga Galdieria partita and the H(2)O(2)-sensitive stromal APX of tobacco. A cysteine residue in the vicinity of the propionate side chain of heme in both enzymes was labeled with TEMPO(*) and DMPO in an H(2)O(2)-dependent manner, indicating that these cysteine residues form thiyl radicals through interaction of APX with H(2)O(2). TEMPO(*) bound to the cysteine thiyl radicals, and sulfinylated and sulfonylated them. Other oxidized cysteine residues were found in both APXs. Experiments with a cysteine-to-serine point mutation showed that formation of TEMPO adducts and subsequent oxidation of the cysteine residue located near the propionate group of heme leads to loss of enzyme activity, in particular in the Galdieria APX. When treated with glutathione and H(2)O(2), both cysteine residues in both enzymes were glutathionylated. These results suggest that, under oxidative stress in vivo, cysteine oxidation is involved in the inactivation of APXs in addition to the proposed H(2)O(2)-mediated crosslinking of heme to the distal tryptophan residue [Kitajima S, Shimaoka T, Kurioka M & Yokota A (2007) FEBS J274, 3013-3020], and that glutathione protects APX from irreversible oxidation of the cysteine thiol and loss of enzyme activity by binding to the cysteine thiol group.  相似文献   

17.
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with ω-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.  相似文献   

18.
Although free radical formation due to the reaction between red blood cells and organic hydroperoxides in vitro has been well documented, the analogous in vivo ESR spectroscopic evidence for free radical formation has yet to be reported. We successfully employed ESR to detect the formation of the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)/hemoglobin thiyl free radical adduct in the blood of rats dosed with DMPO and tert-butyl hydroperoxide, cumene hydroperoxide, ethyl hydrogen peroxide, 2-butanone hydroperoxide, 15(S)-hydroperoxy-5,8,11,13-eicosatetraenoic acid, or hydrogen peroxide. We found that pretreating the rats with either buthionine sulfoximine or diethylmaleate prior to dosing with tert-butyl hydroperoxide decreased the concentration of nonprotein thiols within the red blood cells and significantly enhanced the DMPO/hemoglobin thiyl radical adduct concentration. Finally, we found that pretreating rats with the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea prior to dosing with tert-butyl hydroperoxide enhanced the DMPO/hemoglobin thiyl radical adduct concentration and induced the greatest decrease in nonprotein thiol concentration within the red blood cells.  相似文献   

19.
The kinetic parameters of the redox transitions subsequent to the two-electron transfer implied in the glutathione (GSH) reductive addition to 2- and 6-hydroxymethyl-1,4-naphthoquinone bioalkylating agents were examined in terms of autoxidation, GSH consumption in the arylation reaction, oxidation of the thiol to glutathione disulfide (GSSG), and free radical formation detected by the spin-trapping electron spin resonance method. The position of the hydroxymethyl substituent in either the benzenoid or the quinonoid ring differentially influenced the initial rates of hydroquinone autoxidation as well as thiol oxidation. Thus, GSSG- and hydrogen peroxide formation during the GSH reductive addition to 6-hydroxymethyl-1,4-naphthoquinone proceeded at rates substantially higher than those observed with the 2-hydroxymethyl derivative. The distribution and concentration of molecular end products, however, was the same for both quinones, regardless of the position of the hydroxymethyl substituent. The [O2]consumed/[GSSG]formed ratio was above unity in both cases, thus indicating the occurrence of autoxidation reactions other than those involved during GSSG formation. EPR studies using the spin probe 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) suggested that the oxidation of GSH coupled to the above redox transitions involved the formation of radicals of differing structure, such as hydroxyl and thiyl radicals. These were identified as the corresponding DMPO adducts. The detection of either DMPO adduct depended on the concentration of GSH in the reaction mixture: the hydroxyl radical adduct of DMPO prevailed at low GSH concentrations, whereas the thiyl radical adduct of DMPO prevailed at high GSH concentrations. The production of the former adduct was sensitive to catalase, whereas that of the latter was sensitive to superoxide dismutase as well as to catalase. The relevance of free radical formation coupled to thiol oxidation is discussed in terms of the thermodynamic and kinetic properties of the reactions involved as well as in terms of potential implications in quinone cytotoxicity.  相似文献   

20.
When rat liver mitochondria are treated with tert-butyl hydroperoxide (TBHP) in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), electron paramagnetic resonance (EPR) signals are detected attributable to spin adducts resulting from the trapping of methyl, tert-butoxyl, and tert-butylperoxyl radicals. The addition of respiratory substrate results in a 3- to 7.5-fold increase in the signal intensity of the DMPO/methyl adduct, no change in the signal intensity of the DMPO/tert-butoxyl adduct, and complete loss of the DMPO/tert-butylperoxyl adduct signal. The magnitude of increase of methyl radical production in the presence of respiratory substrate is related to the respiratory control ratio (RCR) of the mitochondrial preparation. In the presence of antimycin A, which blocks electron flow between cytochromes b and c1, no stimulation of methyl radical production is detected with respiratory substrate. Stimulation of methyl radical production by the addition of respiratory substrate is detected in cytochrome c-depleted mitochondria. A similar increase in methyl radical production is detected when ferrous cytochrome c is treated with TBHP in the presence of DMPO (as compared to when ferricytochrome c is used). These results indicate that TBHP is reduced directly by either cytochrome c1, cytochrome c, or by both of these electron transport chain components in mitochondria undergoing state 4 respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号