首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional distribution and frequency of pancreatic endocrine cells in ddY mice were studied by an immunohistochemical (peroxidase anti-peroxidase; PAP) method using four types of specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (hPP). In the pancreatic islets, most of insulin-immunoreactive (IR) cells were located in the central portion. Most of glucagon- and somatostatin-IR cells were observed in peripheral regions although a somewhat smaller number of cells were also located in the central regions. HPP-IR cells were randomly distributed throughout the entire islets. In the exocrine pancreas, insulin-, glucagon-, somatostatin- and hPP-IR cells were detected; they occurred mainly among the exocrine parenchyma as solitary cells. Cell clusters consisted of only insulin- or only glucagon-IR cells and were distributed in the pancreas parenchyma as small islets. In addition, insulin- and glucagon-IR cells were also demonstrated in the pancreatic duct regions. Insulin-IR cells were located in the epithelium and sub-epithelial connective tissue regions as solitary cells and/or clusters (3-4 cells), and glucagon-IR cells were mainly located in the epithelium as solitary cells. Overall, there were 63.89+/-5.39% insulin-, 26.52+/-3.55% glucagon-, 7.25+/-2.83% somatostatin- and 1.90+/-0.58% hPP-IR cells. In conclusion, some strain-dependent characteristic distributional patterns of pancreatic endocrine cells were found in the ddY mouse.  相似文献   

2.
M El-Salhy 《Histochemistry》1984,80(2):193-205
The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish, Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scattered islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, alpha-endorphin, beta-endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P- immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

3.
Islets of Langerhans taken from different parts of the pancreas have been studied ultrastructurally in adult rats. Five different islet cell types were identified in each islet with the aid of morphometrical analysis of their specific secretory granules. Previous immunohistochemical findings concerning the amount and location of insulin-, glucagon-, somatostatin- and pancreatic-polypeptide-containing cells and their ultrastructurally recognizable counterparts were compared, and it was possible to identify four main islet cell types with the electron microscope. Moreover, cells quite similar to the enterochromaffine cells described elsewhere in the exocrine pancreas and in the gastrointestinal tract were found to normally occur in the pancreatic islets of the rat.  相似文献   

4.
Summary The pancreas and gastrointestinal tract (GIT) of adults and of an embryonic stage of 11 cm long (about half the length of newborn fish) of the spiny dogfish,Squalus acanthias, were investigated immunocytochemically for the occurrence of the gastro-entero-pancreatic (GEP) neurohormonal peptides. In the pancreas of adult forms 5 endocrine cell types were seen, namely insulin-, somatostatin-, glucagon-, pancreatic polypeptide (PP)- and gastric inhibitory peptide (GIP)-immunoreactive cells. These cell types form scatterd islets and were seen sometimes to surround small ducts. GIP-immunoreactivity cells did not occur in glucagon-containing cells. In the mucosa of GIT of adults 18 endocrine cell types were observed, viz. insulin-, somatostatin-, glucagon-, glicentin-, PP-, polypeptide YY (PYY)-, vasoactive intestinal polypeptide (VIP)-, GIP-, gastrin C-terminus, CCK-, neurotensin N-terminus-, bombesin/gastrin releasing peptide (GRP)-, substance P-, enkephalin-, -endorphin, -endorphin-, serotonin- and calcitonin immunoreactive cells. These cells occurred mostly in the intestine. All these cell types were of the open type, except glucagon- and glicentin-immunoreactive cells in the stomach, which seemed to be of the closed type. In the muscle layers and the submucosa, VIP and substance P-immunoreactive nerves and neurons were observed. In the pancreas of the dogfish embryo only 3 endocrine cell types could be demonstrated, namely insulin-, somatostatin- and glucagon-immunoreactive cells. In the mucosa of the GIT of the embryos studied 12 endocrine cell types were detected, viz. insulin-, somatostatin-, glucagon-, PP-, PYY-, VIP, GIP, gastrin C-terminus-, CCK-, neurotensin N-terminus-, enkephalin- and serotonin immunoreactive cells. The number of these cells, except that of PYY-immunoreactive cells, was lower than that of adults and in some cases their distribution did not correspond with that of adults.  相似文献   

5.
NADPH-diaphorase activity, which has been previously reported to be associated with the enzyme nitric oxide synthase (NOS), was localized cytochemically in the pancreatic islets of normal rats. All islet cells types, i.e. insulin-, glucagon-, somatostatin- and pancreatic polypeptide-immunoreactive cells, expressed NADPH-diaphorase histochemical activity, whereas the exocrine tissue was almost negative. In streptozotocin-treated rats, only the surviving non-beta cells in the islet periphery were stained. Isolated beta and non-beta cells also expressed intense NADPH-diaphorase activity. By electron microscopy, the enzyme was localized primarily on membranes of the endoplasmic reticulum and nuclear envelope, as previously reported for neurons. In addition the enzyme activity was found in the cis-region of the Golgi complex. These results suggest that the four types of endocrine cells of the islets of Langerhans may contain the NOS-enzyme and thus constitutively produce nitric oxide.  相似文献   

6.
The regional distribution and frequency of the pancreatic endocrine cells in the nude mouse, Balb/c-nu/nu were studied by immunohistochemical (peroxidase anti-peroxidase; PAP) methods using specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (hPP). The pancreas of the mouse was divided into two lobes, the splenic and duodenal lobes, and each lobe was subdivided into three regions, the pancreatic islets (central and peripheral regions), the exocrine region and the pancreatic duct region (consisting of duct epithelium and surrounding connective tissue--sub-epithelial connective tissue). In the pancreatic islets, most of insulin-immunoreactive (IR) cells were located in the central region, and glucagon-, somatostatin and hPP-IR cells were located in the peripheral region regardless of the lobe. In the splenic part, glucagon-IR cells were also located in the central regions, and more numerous somatostatin-IR cells were detected in the central regions compared to those of the duodenal part. hPP-IR cells were restricted to the peripheral regions in both lobes but more numerous cells were detected in the duodenal portion as compared to those of the splenic portion. In the exocrine parenchyma of the splenic lobe, only insulin-, glucagon- and somatostatin-IR cells were detected.. Here, the insulin- and glucagon-IR cells formed cell clusters, while somatostatin-IR cells were present as solitary cells. In the exocrine region of the duodenal portion, only insulin-, somatostatin- and hPP-IR cells were observed, with the same distributional pattern as that found in the splenic lobe. However, clusters of cells consisting only of hPP-IR cells were distributed in the pancreas parenchyma as small islets. In the pancreatic duct region, only solitary hPP-IR cells were demonstrated in the sub-epithelial connective tissue regions of the splenic portion. In conclusion, some strain-dependent characteristic distributional patterns of pancreatic endocrine cells, especially of the hPP-IR cells, were found in the nude mouse. In addition, somewhat different distributional patterns were found between the two pancreatic lobes.  相似文献   

7.
The present study examines the morphological changes occurring in subcutaneous pancreatic tissue grafts (SPTG) and its effect on the host pancreatic islet cells in streptozotocin (STZ)-induced diabetic rats using morphological techniques. SPTG survived after 15 weeks of transplantation. Its acinar cells degenerated but the ducts and endocrine cells survived. The surviving and newly formed pancreatic tubules and endocrine cells filled the spaces left by degenerated acinar cells. Compartmentalization of the surviving parenchymatic tissues was observed, with the pancreatic tubules lying in the periphery of the graft and the endocrine tissue in the inner portion of the graft. Lymphocytes invaded the inner portion of the graft, conglomerating around endocrine cells. It was interesting, however, that, lymphocytes where not observed in the periphery of the grafts where most of the surviving pancreatic tubules lie. In addition to this, necrotic tissues were observed in the inner part of the graft. Fifteen weeks after transplantation into the subcutaneous region, insulin, glucagon, somatostatin and pancreatic polypeptide-immunoreactive cells were observed in many parts of the graft. In the peripheral parts of the grafts, large numbers of pancreatic tubules differentiated into endocrine cells. In conclusion, the ductal and endocrine cells of pancreatic tissue fragments survived in the subcutaneous region of rat with normal pattern of distribution.  相似文献   

8.
The distribution and frequency of gastro-entero-pancreatic (GEP) endocrine cells were studied in vampire bats by immunocytochemistry. Moderate numbers of somatostatin- and a few 5-hydroxytryptamine (5-HT)- and glucagon-immunoreactive cells were seen in the fundic cecum of the stomach. Numerous gastrin- and moderate numbers of somatostatin- and 5-HT-immunoreactive cells were found in the pyloric region. Moderate numbers of 5-HT-, somatostatin-, and gastrin-immunoreactive cells also were found in BRUNNER's glands. In addition to the above-mentioned 4 immunoreactive cell types, cells immunoreactive for glicentin, secretin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), and neurotensin were found in the intestine. Numerous insulin-, moderate numbers of somatostatin- and glucagon-, and a few 5-HT-immunoreactive cells were detected in the pancreatic islets with lesser numbers scattered within the exocrine pancreas. Motilin- and pancreatic polypeptide-immunoreactive cells were not observed in this study.  相似文献   

9.
The regional distribution and frequency of the pancreatic endocrine cells in the SKH-1 hairless mouse were studied by an immunohistochemical (peroxidase anti-peroxidase; PAP) method using four types of specific antisera against insulin, glucagon, somatostatin and human pancreatic polypeptide (PP). The pancreas of mice were divided into three portions; pancreatic islets, exocrine and pancreatic ducts. The pancreatic islets were further subdivided into three regions (central, mantle and peripheral region) according to their located types of immunoreactive cells. In the pancreatic islet portions, insulin-immunoreactive cells were located in the central and mantle regions with 84.60 +/- 7.65 and 33.00 +/- 12.45/100 cells frequencies, respectively, but most of somatostatin-, glucagon- and PP-immunoreactive cells were detected in the mantle and peripheral regions. In the mantle region, somatostatin-, glucagon- and PP-immunoreactive cells were demonstrated with 28.70 +/- 9.91, 52.00 +/- 14.05 and 2.60 +/- 1.51/100 cells frequencies, respectively, and showed 6.20 +/- 2.86, 15.30 +/- 5.31 and 21.50 +/- 10.28/100 cells frequencies, respectively in peripheral regions. However, glucagon-immunoreactive cells were also demonstrated in the central regions with 4.00 +/- 2.83/100 cells frequency. In the exocrine portions, insulin-, glucagon-, somatostatin- and PP-immunoreactive cells were demonstrated in the SKH-1 mouse with 0.90 +/- 0.74, 0.80 +/- 0.79,4.90 +/- 3.54 and 2.70 +/- 1.34/100 cells frequencies, respectively. In the pancreatic duct portions, insulin-, glucagon- and somatostatin-immunoreactive cells were demonstrated in the subepithelial connective tissues and showed islet-like appearances with 30.30 +/- 14.67, 2.70 +/- 3.13 and 5.90 +/- 4.23/100 cells frequencies, respectively. However, no PP-immunoreactive cells were demonstrated in these regions. In conclusion, some peculiar distributional patterns of pancreatic endocrine cells were found in the SKH-1 hairless mouse.  相似文献   

10.
The regional distribution and frequency of the pancreatic endocrine cells in the splenic lobe of grass lizard, Takydromus wolteri, were studied by immunohistochemical (PAP) method using six types of specific mammalian antisera against bovine Sp-1/chromogranin (bCG), serotonin, insulin, glucagon, somatostatin and human pancreatic polypeptide (hPP). The pancreas was subdivided into two regions--islet kike and exocrine regions. The frequency of each immunoreactive (IR) endocrine cells was calculated as mean number/total 100 islet cells and as mean number/total 1,000 cells (including exocrine and endocrine cells) using automated image analysis process. In addition, the percentage of each IR cell was also calculated. All of six endocrine cells were demonstrated. They were dispersed in the whole pancreatic parenchyma between exocrine acinar cells, or they were also observed as islet like clusters. In islet-like regions, bCG-, insulin- and glucagon-IR cells were detected as one or two cell layer cords and they were located between this cell-cords with 14.30+/-5.62, 61.50+/-9.76 and 26.50+/-9.31/100 cells frequencies, respectively. However, somatostatin-IR cells were mainly located in the peripheral parts not in cell-cords with 12.40+/-4.86/100 cells, and no serotonin- and hPP-IR cells were demonstrated. In exocrine regions, all of bCG-, serotonin-, insulin-, glucagon-, somatostatin- and hPP-IR cells were detected and they occurred mainly among the exocrine parenchyma as solitary cells with 10.30+/-2.54, 0.80+/-0.63, 15.50+/-5.30, 5.80+/-2.66, 3.10+/-1.29 and 11.00+/-3.33/1000 cells frequencies, respectively. In addition, serotonin-IR cells were mainly located between epithelia and connective tissue of pancreatic duct. Overall, there were 0.58+/-0.49% serotonin-, 56.44+/-9.35% insulin-, 23.73+/-8.22% glucagon-, 11.28+/-3.03% somatostatin- and 7.97+/-2.02% hPP-IR cells.  相似文献   

11.
Bovine pancreatic endocrine cells were investigated by light microscopic immunohistochemistry. Serotonin-immunoreactive cells as well as insulin-, glucagon-, somatostatin-, bovine pancreatic polypeptide (BPP)-immunoreactive cells were detected in the pancreatic islets. Generally, insulin-immunoreactive cells were distributed throughout the islet and the others took peripheral location. Since the distribution and shape of serotonin-immunoreactive cells were very similar to glucagon- and BPP-immunoreactive cells, serial sections were restained by using the elution method. All glucagon- and BPP-immunoreactive cells also showed serotonin immunoreactivity but glucagon and BPP immunoreactivities were never observed to be colocalized in the same cell. A small number of serotonin-immunoreactive cells were observed that showed serotonin immunoreactivity only.  相似文献   

12.
The endocrine pancreas of the desert lizard (Chalcides ocellatus) was investigated histologically and immunocytochemically. The endocrine tissue was concentrated in the dorsal lobe, where it constituted about 7% of the total volume. In the ventral lobe the endocrine tissue formed approximately 1% of the total volume. Four endocrine cell types were observed in the pancreas of this species, namely insulin-, glucagon-, somatostatin- and pancreatic polypeptide (PP)-immunoreactive cells. The volume occupied by these cells was 1, 1, 0.6 and 0.3% of the total volume of the pancreas, respectively. Insulin-immunoreactive cells were located in the islet centre and comprised 3% of dorsal and 0.2% of the ventral lobe volume. Glucagon cells occurred at the islet periphery and amounted to 3 and 0.2% of the volume of the dorsal and ventral lobes, respectively. Somatostatin-immunoreactive cells were located at the islet periphery as well as in between the exocrine parenchyma. They constituted 1 and 0.2% of the volume of the dorsal and ventral lobes, respectively. PP-immunoreactive cells occurred mainly among the exocrine parenchyma as solitary cells. They formed only 0.03% of the volume of the dorsal lobe. The corresponding figure in the ventral lobe was 0.6%.  相似文献   

13.
The regional distribution and quantitative frequency of pancreatic endocrine cells were demonstrated in the Korean golden frog (Rana plancyi chosenica Okada), which is known as a Korean endemic species, for the first time, by immunohistochemical methods using specific mammalian antisera to insulin, glucagon, somatostatin and human pancreatic polypeptide (PP). In the pancreas of the Korean golden frog, all four endocrine cell types were demonstrated. Insulin- and glucagon-positive cells were located in the pancreas as single cells or islet-like clusters with frequencies of 85.90±18.28 and 54.30±8.77/1,000/1,000 cells, respectively. Somatostatin-containing cells were also dispersed in the pancreas as single cells or clusters but in the case of clusters, they are exclusively situated in the marginal regions of insulin- or glucagon-positive cell clusters. Cells stained for somatostatin cell frequency was 15.50±3.10/1000 cells. PP-containing cells were also distributed as single cells or clusters with frequency of 53.40±11.96/1,000 cells. Clusters consisted of PP-positive cells are distributed as a core type and a marginally distributed type. Overall, there were 40.84±3.81% insulin-, 26.02±1.71% glucagon-, 7.63±2.09% somatostatin- and 25.51±3.26% PP-IR cells.  相似文献   

14.
Tissue kallikreins are thought to be present in the pancreatic islets of Langerhans and to aid in the conversion of proinsulin to insulin. In recent immunohistochemical studies, we observed strong staining of the newly identified human kallikreins 6 and 10 (hK6 and hK10) in the islets of Langerhans. Here, we examine hK6 and hK10 immunoexpression in different types of islet cells of the endocrine pancreas, in order to obtain clues for hK6 and hK10 function in these cells. Ten cases of normal pancreatic tissue, two cases of nesidioblastosis, five insulin-producing tumours and one case of multiple endocrine neoplasia 1 syndrome, containing an insulin-, a somatostatin- and several glucagon-producing tumours, as well as tiny foci of endocrine dysplasia with different predominance of the secreted hormones (mainly glucagon and pancreatic polypeptide) were included in the study. A streptavidin–biotin–peroxidase and an alkaline phosphatase protocol, as well as a sequential immunoenzymatic double staining method were performed, using specific antibodies against hK6, hK10, insulin, glucagon, somatostatin, pancreatic polypeptide, and serotonin. hK6 and hK10 immunoexpression was observed in the islets of Langerhans, including the pancreatic polypeptide-rich islets, in the normal pancreas. Scattered hK6 and hK10 positive cells were localized in relationship with pancreatic acinar cells. In the exocrine pancreas, a cytoplasmic and/or brush border hK6 and hK10 immunoexpression was observed in the median and small sized pancreatic ducts, while the acinar cells were negative. Foci of nesidioblastosis and endocrine dysplasia expressed both kallikreins. hK6 and hK10 were also strongly and diffusely expressed throughout all insulin-, glucagon- and somatostatin-producing tumours. The double staining method revealed co-localization of each hormone and hK6/hK10 respectively, in the same cellular population, in the normal as well as in the diseased pancreas. Our results support the view that hK6 and hK10 may be involved in insulin and other pancreatic hormone processing and/or secretion, as well as in physiological functions related to the endocrine pancreas.  相似文献   

15.
Summary Pancreatic polypeptide (PP)-containing cells were detected by using anti-bovine PP (BPP) serum in the pancreas and gastrointestinal tract of human fetuses, premature infants and in the pancreas, antrum and jejunum of adult man obtained by biopsy from patients with normal gastroduodenal endoscopy. The localization was established by studying the distribution of PP cells in comparison to the distribution of glucagon-, somatostatin- and insulin cells. The first PP cells are seen in the pancreas at 10 weeks of gestation. They are located preferentially in the lower part of the head of the pancreas. The specificity of immunocytological reaction was ascertained by the inhibition of the reaction by bovine pancreatic polypeptide, glucagon and insulin did not modify the immunocytological reaction.  相似文献   

16.
A large number of antisera mainly raised against mammalian hormones are tested immunocytochemically on the GEP-endocrine system of mouse and fish (Barbus conchonius). The endocrine pancreas of mouse and fish appeared to contain the same four endocrine cell types; insulin-, glucagon-, PP- and somatostatin-immunoreactive cells. In mouse about 13 GEP endocrine cell types are distinguished: 1. insulin-, 2. somatostatin-, 3. glucagon-, 4. PP-, 5. (entero)glucagon-/PP-like, 6. CCK-like, 7. substance P-, 8. neurotensin-, 9. VIP-, 10. gastrin-, 11. secretin-, 12. beta-endorphin-, 13. serotonin-immunoreactive cells. Based on this and a previous study at least 13 GEP endocrine cell types seems to be present in stomachless fish: 1-9 as described for mouse, 10. (entero)glucagon-like, 11. met-enkephalin, 12. VIP-like, 13. unspecific immunoreactive endocrine cells. Coexistence of glucagon and PP-like peptides is found in the gut and pancreas of mice and in the gut of B. conchonius. In mouse pancreas and fish gut, endocrine cells showing only PP- or glucagon-like immunoreactivity are found too. In mouse stomach some endocrine cells showing only PP-immunoreactivity are demonstrated. In the same region coexistence of C-t-gastrin- and FMRF-amide-immunoreactivity is found in endocrine cells. The importance of these phenomena are discussed. Enteric nerves immunoreactive with antisera raised against substance P and GRP are found in mouse, against somatostatin and met-enkephalin in both mouse and fish and against VIP in fish.  相似文献   

17.
Neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactive nerves were demonstrated in 21-day-old embryonic pancreatic tissue fragments transplanted into the anterior eye chamber of rats for 22, 45 and 109 days and in 60-day-old normal adult pancreas using immunohistochemical technique. In normal adult tissue, NPY-positive neurons lie close to the basal and lateral walls of the acinar cells. NPY-containing nerve fiber plexuses were found around blood vessels. VIP-immunopositive nerves were also discernible in the outer parts of the islets of Langerhans and on pancreatic ducts. In the transplants, it is not only the neural elements that survived but also the pancreatic ducts and the endocrine cells. VIP- and NPY-positive neurons were found in the stroma of the surviving pancreatic tissue. The distribution of these neural elements is similar to that of normal tissue in the surviving pancreatic ducts but different with regards to the acinar tissue. This study confirms that intrinsic nerves can survive and synthesize polypeptides even after 109 days of transplantation into the anterior eye chamber.  相似文献   

18.
Summary A large number of antisera mainly raised against mammalian hormones are tested immunocytochemically on the GEP-endocrine system of mouse and fish (Barbus conchonius). The endocrine pancreas of mouse and fish appeared to contain the same four endocrine cell types; insulin-, glucagon-, PP- and somatostatin-immunoreactive cells.In mouse about 13 GEP endocrine cell types are distinguished 1. insulin-, 2. somatostatin-, 3. glucagon-, 4. PP-, 5. (entero)glucagon-/PP-like, 6. CCK-like, 7. substance P-, 8. neurotensin-, 9. VIP-, 10. gastrin-, 11. secretin-, 12. -endorphin-, 13. serotonin-immunoreactive cells.Based on this and a previous study at least 13 GEP endocrine cell types seems to be present in stomachless fish: 1–9 as described for mouse, 10. (entero)glucagon-like, 11. met-enkephalin, 12. VIP-like, 13. unspecific immunoreactive endocrine cells.Coexistence of glucagon and PP-like peptides is found in the gut and pancreas of mice and in the gut of B. conchonlus. In mouse pancreas and fish gut, endocrine cells showing only PP-or glucagon-like immunoreactivity are found too. In mouse stomach some endocrine cells, showing only PP-immunoreactivity are demonstrated. In the same region coexistence of C-1-gastrin-and FMRF-amide-immunoreactivity is found in endocrine cells. The importance of these phenomena are discussed.Enteric nerves immunoreactive with antisera raised against substance P and GRP are found in mouse, against somatostatin and met-enkephalin in both mouse and fish and against VIP in fish.In honour of Prof. P. van Duijn  相似文献   

19.
Mast cells are important mediators of normal angiogenesis, and participate in normal would healing, i.e. processes involved in pancreatic islet engraftment. The aim of the study was to evaluate if mast cells are present in islet grafts. For this purpose, male normoglycaemic Wistar-Furth rats were either untreated or syngeneically implanted with 250 islets under the renal capsule. The animals were killed 1 month later, and the kidneys and endogenous pancreas were removed, fixed and embedded in paraffin. The distribution of mast cells was studied in Alcian Blue stained sections. Mast cells were rarely encountered in endogenous islets, but were frequent in the renal capsule adjacent to islet grafts. Mast cells interspersed between graft endocrine cells were as rare as in the endogenous pancreas. We conclude that mast cells may contribute to the engraftment after islet transplantation.  相似文献   

20.
The regional distribution and frequency of pancreatic endocrine cells in the red-bellied frog, Bombina orientalis, were studied by the immunohistochemical peroxidase anti-peroxidase (PAP) method using five types of specific mammalian antisera to insulin, glucagon, somatostatin, bovine pancreatic polypeptide (PP) and secretin. The frequency was calculated as the mean number of each endocrine cell type/1,000 total cells (including exocrine and endocrine cells) using an automated image analysis process. The percentage of each immunoreactive (IR) cell species to the total IR cell population was also calculated. In the pancreas of the red-bellied frog, all five endocrine cell types were demonstrated. Insulin IR cells were located in the pancreas as single cells or islet-like clusters. The latter were localized in central regions. The insulin-IR cells showed a frequency of 65.40 plus/minus 14.56/1,000 cells. Glucagon IR cells were also detected as single cells or as clusters but in the case of clusters, two distributional patterns were detected - a central core type and a marginally distributed type. They showed an abundance of 32.70 plus/minus 7.32/1,000 cells. Somatostatin-IR cells were dispersed throughout the pancreatic parenchyma as single cells, three to four cells, or clusters. The clusters were located in the marginal regions. The somatostatin-IR cell frequency was 19.40 plus/minus 6.52/1000 cells. PP-IR cells were randomly distributed throughout the pancreatic parenchyma as single cells with a frequency of 14.70 plus/minus 4.92/1,000 cells. Secretin-IR cells were demonstrated as clusters or as single cells, and as clusters they occupied the central regions. They showed a frequency of 39.60 plus/minus 10.36/1,000 cells. This is the first report of the presence of secretin-IR cells in amphibian pancreatic endocrine cells. Overall, there were 37.20 plus/minus 6.84% insulin-, 21.90 plus/minus 5.55% glucagon-, 11.60 plus/minus 4.33% somatostatin-, 8.60 plus/minus 2.72% PP- and 23.40 plus/minus 4.45% secretin-IR cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号