首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY.
  • 1 Germination experiments demonstrated that the innate dormancy of the seeds of Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze could be overcome by a cold treatment. Light stimulated the germination of the three species. Hypoxic conditions stimulated the germination of Nymphaea alba and Nuphar lutea seeds but the seeds of Nymphoides peltata did not germinate under these conditions.
  • 2 Experimental seed banks of Nymphaea alba, Nuphar lutea and Nymphoides peltata were laid out in three water bodies, varying in pH and alkalinity. Germination patterns indicated that Nymphaea alba and Nuphar lutea produce transient seed banks, but that Nymphoides peliata produces a persistent seed bank. Sampling of natural seed banks and subsequent germination tests were in concordance with the results of the seed bank experiment.
  • 3 The experimental above-ground seed banks of Nymphaea alba, Nuphar lutea and Nymphoides peltata showed similar germination patterns in the three selected water bodies, despite the differences in pH and alkalinity between them. However, the distribution of Nymphoides peliata is restricted to well-buffered waters, so that its absence from soft and acid water bodies must be due to post-germination mechanisms and/or processes.
  • 4 In aquatic systems where Nymphoides peltata co-exists with the other nymphaeid species studied, it is largely restricted to a bell between the helophytes and the vegetation at deeper sites. The deeper sites were dominated by Nuphar lutea and Nymphaea alba. Germination requirements and seedling emergence from buried seeds of Nymphaea alba, Nuphar lutea and Nymphoides peliata play an important role in the establishment of the zonation pattern of these nymphaeid macrophytes.
  相似文献   

2.
1. We investigated the importance of lake water chemistry and substrate properties in regulating microbial decomposer communities on macrophyte litter. Ten lakes of differing water chemistry, including such variables as nutrient concentration, pH and dissolved organic carbon, were sampled in October 2003. Water chemistry was analysed, and litter from the macrophytes Phragmites australis, Schoenoplectus lacustris and Nuphar lutea was collected from both above and below the water surface. 2. The three plant species differed widely in carbon and nitrogen content. The aerial parts of P. australis had highest C : N ratio (mean value 125), while the lowest values were found in leaves of N. lutea (19.8). 3. Fungal carbon ranged from 0.15 to 6.4 mg g?1 dry weight (DW), and was higher on aerial than on submerged plant parts. Fungal biomass was highest on S. lacustris and lowest on N. lutea. Denaturing gradient gel electrophoresis revealed no differences in the number of fungal taxa between plant species or plant parts, with the limitation that no molecular analysis was possible for N. lutea. 4. In contrast, bacteria were most abundant on N. lutea, but showed no significant difference between leaf and stem parts. The number of bacterial taxa was highest on the submerged parts of P. australis. 5. The correlations between microbial variables and the properties of lakes and litter were analysed using multivariate statistics. In a principal component analysis, litter properties explained 78% of the variation in microbial variables. In contrast, redundancy analysis revealed that the explanatory power of lake water chemistry was only 20%, indicating that the properties of the growth substratum were more important than those of the lake water for the attached microbial communities.  相似文献   

3.
In this study we investigated above-ground biomass and morphological responses of a floating-leaved plant species, Nymphaea alba, to small spring water level manipulations (0.1–0.5 m) in a large, shallow lake over a 9-year period (1995–2003). A year effect was found in mean annual above-ground plant biomass with higher values found in years of low water levels, 275–339 g DW m−2 in 1995 and 2003 against 143–198 g DW m−2 in 1996–2002 (no data transformation). No significant changes in biomass patterns were observed within each season (one summer peak), except in 1995 when a summer decline in biomass occurred. The amplitude and duration of exposure to high water levels affected the spring and annual above ground biomass of N. alba. The plant responded to high spring water levels by producing longer and thinner petioles to preserve leaves from flooding while no significant changes in leaf surface area (except in May) and leaf/petiole biomass ratio were obtained. The results are interpreted with regard to plant adaptations to changing environments (biomass allocation patterns in the different plant organs and stem density) and the effects of other abiotic factors relevant to the size of the system. We concluded that small deviations in spring water level can be driving forces in a large system in controlling the above-ground biomass of this floating-leaved plant.  相似文献   

4.
5.
Zhonghua Wu  Dan Yu 《Hydrobiologia》2004,527(1):241-250
Two experiments were designed to investigate the effects of competition on growth and biomass allocation in Nymphoides peltata. First, competition between N. peltata and Zizania latifolia was assigned with the densities of N. peltata to Z. latifolia ratios of 4:0, 4:2, 4:4 and 4:8. The increase of density of Z. latifolia resulted in apparent decrease of total biomass, relative growth rate (RGR), leaf area ratio (LAR) and mean leaf area per plant of N. peltata. N. peltata allocated above-ground biomass to shoots and roots and decreased the ratios of above-ground to below-ground biomass (A b/B b) with increasing density of Z. latifolia. Second, competitions between N. peltata and emerged Z. latifolia, floating-leavedTrapa bispinosa and submerged Myriophyllum spicatum were studied in the mean time. Total biomass, A b/B b and mean leaf area per plant of N. peltata were higher when competing with floating-leaved T. bispinosa than in N. peltata growing in the community with submerged M. spicatum and emerged Z. latifolia. There were no significant differences in RGR, net assimilation rate (NAR) and LAR of N. peltata when growing with each of the competitor species. Our studies indicate that the growth of N. peltata is strongly inhibited by the presence of Z. latifolia, and N. peltata can show certain competitive advantages over T. bispinosa and M. spicatum.  相似文献   

6.
Two experiments were conducted to investigate the effects of competition on growth and performance of Nymphoides peltata (Gmel.) O. Kuntze in microcosm. Part of the research on growth and biomass allocation of N. peltata in response to competition had been reported early (Wu, Z. & D. Yu, 2004, Hydrobiologia 527: 241–250). This paper focuses on the morphological variations of N. peltata under competitive pressure. First, competition between N. peltata and Zizania latifolia (Griseb.) Turcz. ex Stapf. was assigned with the densities of N. peltata to Z. latifolia ratios of 4:0, 4:2, 4:4 and 4:8. Water surface coverage, surface area per leaf blade and number of leaves per plant of N. peltata all declined significantly with increasing density of competitor. Similar results were also found for petiole length and density of branching. However, the variations of planting density did not significantly affect the number of ramets per plant and the stolon length of N. peltata. Second, competitions between N. peltata and emerged Z. latifolia, floating-leaved Trapa bispinosa Roxb. and submerged Myriophyllum spicatum L. were also studied simultaneously. The results showed that significant difference was only found for the water surface coverage of N. peltata. No other significant differences were found for the number of ramets per plant, number of leaves per plant, density of branching, surface area per leaf blade, petiole length, and stolon length of N. peltata. Our studies indicate that N. peltata presents morphological variations when it is growing with Z. latifolia, such that the growth of above-ground parts decrease (i.e., leaf number, petiole length, branching density) and the growth of below-ground parts remains stable (i.e., stolons length). However, N. peltata does not show apparent differences in morphology when it is growing with T. bispinosa or M. spicatum. Accordingly, we conclude that the growth of N. peltata may be apparently inhibited by the presence of Z. latifolia, while T. bispinosa and M. spicatum may have little impact on the growth and performance of N. peltata.  相似文献   

7.
The aquatic macroinvertebrates in two freshwater biotopes,viz. aNymphoides peltata-dominated site and a macrophyte-free site, were studied quantitatively in a shallow alkaline oxbow lake of the river Waal, the main branch of the river Rhine in The Netherlands. The research comprised the analysis of water, sediment and macrophyte samples.In the macrophyte-free site Oligochaeta and Nematocera, particularly of the collector gatherer functional feeding group, dominated the prevailing benthic community. The total macroinvertebrate biomass ranged here from 0.3 to 0.9 g ash-free dry weight per m2 of biotope.Species richness, densities, and biomass of macroinvertebrates were considerably higher in the biotope dominated byNymphoides peltata. Many taxa were found associated with the aboveground macrophyte. The sediment compartment, however, contributed most to the total density and biomass of macroinvertebrates. Nematocera and Oligochaeta were the most abundant fauna groups, whereas the largest share in total biomass was provided by clams (Mollusca). The biomass of the total macroinvertebrate community in theNymphoides-dominated site ranged from 6.2 to 7.5 g ash-free dry weight per m2 of biotope. The biomass of the aboveground phytophilous fauna ranged from 0.1 to 0.6 g ash-free dry weight per m2 of biotope. In September, when theNymphoides peltata vegetation was in its senescent phase, the largest numbers and the highest biomass of phytophilous macroinvertebrates were observed. The contribution of the shredder functional feeding group was high in this period. This, and the overall high abundance of fauna with a detritivorous mode of life, indicates the importance of macrophyte detritus as input to food chains.  相似文献   

8.
《Aquatic Botany》2007,86(4):316-320
A 12-week microcosm experiment was conducted to identify the intraspecific and interspecific interference abilities of two floating-leaved aquatic plants Nymphoides peltata (Gmel.) O. Kuntze and Trapa bispinosa Roxburgh. N. peltata exerted a strong interspecific interferential effect on T. bispinosa, but the opposite was not apparent. There existed an intraspecific interferential effect of T. bispinosa on itself, although the interspecific interference of N. peltata was stronger. No apparent intraspecific interference was found among the individual plants of N. peltata. The removal of N. peltata had a positive impact on growth and performance of T. bispinosa, whereas no apparent impacts were found in the removal of T. bispinosa on growth and performance of N. peltata. Moreover, both the removal of N. peltata and T. bispinosa did not show apparent effects on growth of the remaining individuals of the species themselves. These results suggest that N. peltata has distinct interferential advantages over T. bispinosa and that this depends mainly upon the differences between the two species in morphology and life history.  相似文献   

9.
《Aquatic Botany》2007,86(3):280-284
We evaluated one-sided competition from the floating-leaved plant Nymphoides peltata (non-indigenous in Sweden) on three submerged plant species, Ceratophyllum demersum, Elodea canadensis and Ranunculus circinatus, in a controlled experiment. The three submerged species were allowed to grow for 21 days in the absence of N. peltata and with the species present at densities of approximately 33, 66 and 100% cover. All species retained a positive relative growth rate (RGR) based on length at all N. peltata densities, but responded with negative growth based on weight for several treatments. C. demersum achieved RGR of 0.03 day−1 in the absence of N. peltata, RGR of 0.02 day−1 in the lowest N. peltata density but negative RGR in the two denser treatments. E. canadensis responded similarly with RGR of 0.04 day−1 in the absence of N. peltata, RGR of 0.01 day−1 in the lowest N. peltata density and negative RGR in the two denser treatments. R. circinatus, on the other hand, never achieved positive RGR based on weight. These results suggest that one-sided competition from floating-leaved plants has a profound effect on the submerged plant community.  相似文献   

10.
Production, turnover and nutrient dynamics of floating leaves of Nymphaea alba L. and Nuphar lutea (L.) Sm. were studied in four aquatic systems in The Netherlands, differing strongly in water quality. Production was 108–447 g AFDW.m−2 for N. lutea and 319–348 g AFDW.m−2 for N. alba. Turnover ranged from 3.6 to 4.4 without much difference between the sites and the species. During senescence 60–70% of the N and P from the leaves was resorbed by both of the plant species. The nutrient flow from the floating leaves into the detritus food chain differed considerably between the species and sites studied, mainly because of the differences in production. The data suggest that production is strongly influenced by the environment, whereas turnover and nutrient resorption during senescence seem to be plant characteristics. There was little difference in dynamics of the chlorophyll-α concentration in the leaves of the two species, irrespective of the growing site. Floating leaves of both species lost about 70% of their area due to fragmentation in the alkaline waters, whereas in the acid water very little fragmentation was observed.  相似文献   

11.
In 1980, the monthly changes in biomass and plant surface area, together with aspects of production of Nymphoides peltata (Gmel.) O. Kuntze were studied in a backwater of the river Waal (The Netherlands). Furthermore, the seasonal changes in the vertical stratification of the biomass were studied in concrete tanks. These seasonal changes were studied with the harvest method, while the estimation of the net primary production was based upon biomass data and turnover rates of various plant parts. The data thus obtained are compared with those of other water plants, especially other floating-leaved macrophytes. In 1980, N. peltata reached its peak biomass in August being 372 g AFDW m−2 (ash-free dry weight). The annual net productivity of Nymphoides was estimated to be 1036 g AFDW m−2. The leaf blades and their petioles contributed most to the production.  相似文献   

12.
A study was conducted to ascertain monthly changes in biomass of the plant and nutrient content in various organs of Nymphoides hydrophylla grown in a tropical pond during September 1999–August 2000 in relation to environmental factors. Biomass of N. hydrophylla ranged from 25 to 247 g dry weight m−2. Among the various organs, leaf blade showed highest nitrogen (3.0–4.6%) and phosphorus content (0.9–2.4%). Comparative data of three Nymphoides species showed that N. peltata, the temperate species, had maximum potential of biomass production while long flowering period, year around growth, higher nitrogen content in various organs and presence of other associated flora were unique features of tropical species (N. hydrophylla and N. indica). Both water temperature and water level together appeared to be the best environmental variables that significantly explained the variability in biomass of N. hydrophylla.  相似文献   

13.
A number of natural products with medicinal properties increase DNA cleavage mediated by type II topoisomerases. In an effort to identify additional natural compounds that affect the activity of human type II topoisomerases, a blind screen of a library of 341 Mediterranean plant extracts was conducted. Extracts from Nuphar lutea, the yellow water lily, were identified in this screen. N. lutea has been used in traditional medicine by a variety of indigenous populations. The active compound in N. lutea, 6,6’-dihydroxythiobinupharidine, was found to enhance DNA cleavage mediated by human topoisomerase IIα and IIβ ∼8-fold and ∼3-fold, respectively. Mechanistic studies with topoisomerase IIα indicate that 6,6’-dihydroxythiobinupharidine is a “covalent poison” that acts by adducting the enzyme outside of the DNA cleavage-ligation active site and requires the N-terminal domain of the protein for its activity. Results suggest that some of the medicinal properties of N. lutea may result from the interactions between 6,6’-dihydroxythiobinupharidine and the human type II enzymes.  相似文献   

14.
SUMMARY.
  • 1 Considerable changes in macrophyte vegetation can be noticed in 146 originally soft waters, when data on the recent aquatic vegetation are compared with historical information from the period 1900–60. Changes in nutrient status (N, P and C) and accumulation of organic material can be regarded as the operative factors.
  • 2 The processes observed in soft waters are acidification, eutrophication and water hardening. Which process dominates depends on the type of soft water.
  • 3 Acidification as well as eutrophication of water bodies may ultimately result in the total disappearance of all aquatic macrophytes, with the exception of the floating-leaved nymphaeids Nymphaea alba L. and Nuphar lutea (L.) Sm. Observed successional stages are described and summarized.
  相似文献   

15.
In this study we investigated the interplay between water level management, floating macrophytic vegetation and nesting whiskered tern (Chlidonias hybridus) during 8 years (1995–2002) at a shallow macrophyte-dominated lake in western France. The specific question was to see if slight increases in the water regime of the lake (three scenarios), as part of a restoration programme, affect the timing of nesting and occupation of colonies by whiskered terns by way of changes in biomass of waterlily (Nymphaea alba) beds where colonies always establish. During the study period, egg-laying dates were progressively delayed up to 40–50 days (mid-May to early July) in relation to late appearance of suitable waterlily biomass (R 2 = 0.67, p = 0.01) associated with high spring water levels (1.10–1.25 m vs. 0.95 m). Simultaneously some nesting attempts were observed in sub-optimal habitats (adjacent wet grasslands) in high flooding conditions leading either to poor breeding success or colony desertion. We concluded that there is a need for compromise between the experimental water levels used to control waterlily biomass and the nesting requirements of the whiskered tern population in this lake of international importance (260–510 pairs in 1995–2002, ≥ 1% Ramsar level).  相似文献   

16.
Nymphoides peltata (Gmel.) O. Kuntze, a nymphaeid macrophyte,occurs commonly in polder and fluviatile areas in large partsof Europe and Asia. In contrast to the nymphaeid macrophytesNymphaea alba L. and Nuphar lutea (L.) Sm., Nymphoides peltatais almost completely absent from poorly-buffered waters andis never found in acid water bodies. Transplantation experimentsin water bodies of varying alkalinity demonstrated that, irrespectiveof the sediment type, leaf production of Nymphoides did occurin poorly-buffered waters, but not in acid waters. Cultivation experiments showed that floating leaf developmentof Nymphoides peltata could only take place if sufficient calciumwas available in the water layer or in twice-demineralized water.Addition of calcium to an acid cultivation medium or to watercollected from an acid moorland pool resulted in leaf production.Growth of Nymphoides in acid waters is impossible due to insufficientcalcium concentrations in the water layer of such waters. Itis suggested that the absence of Nymphoides peltata in somepoorly-buffered water bodies is partly due to the spatial isolationfrom rivers and canals and the high frequence of desiccation.The restricted occurrence of Nymphoides peltata to well-bufferedalkaline waters is functionally more related to the calciumavailability than to the bicarbonate content. Key words: Aquatic macrophytes, distribution, Nymphoides peltata, leaf production, calcium, acid, poorly-buffered and alkaline water  相似文献   

17.
Several anti-leishmanial drugs of choice are of plant origin. Many of the available drugs against the disease are toxic and in certain cases parasite drug resistance is developed. The development of new compounds is urgently required.Aims of the studyTo determine the leishmanicidal activity of the Nuphar lutea plant extract against Leishmania major in vitro.Materials and methodsThe leishmanicidal activity of methanolic plant extract against L. major free living promastigotes and intracellular amastigotes was evaluated, using microscopic examinations and the enzymatic XTT assay.ResultsMethanolic extract of N. lutea was highly effective against both Leishmania promastigotes and L. amastigotes (IC50=2±0.12 μg/ml; ID50=0.65±0.023 μg/ml; LD50=2.1±0.096 μg/ml, STI=3.23). The extract at 1.25 μg/ml totally eliminated the intracellular parasites within 3 days of treatment. Also, a synergistic anti-leishmanial activity was demonstrated with N. lutea extract combined with the anti-leishmanial drug – paromomycin. The partially purified N. lutea active component was found to be a thermo-stable alkaloid(s) with no electrical charge and is resistant to boiling and to methanol, dichloromethane and xylene treatment.ConclusionsThe present study suggests that N. lutea might be a potential source of anti-leishmanial compounds.  相似文献   

18.
In 1980, the seasonal changes in nitrogen and phosphorus concentration of various plant parts of Nymphoides peltata (Gmel.) O. Kuntze, together with aspects of nitrogen and phosphorus cycling by this species were studied in an oxbow lake of the river Waal (The Netherlands). The nitrogen and phosphorus stores of the water, seston, sediment and macrophyte compartments were assessed each month.The underground Nymphoides structures had high nitrogen and phosphorus concentrations before and after the main growing season, while during summer the aboveground plant parts had high nutrient contents. Nymphoides peltata accumulated maximum amounts of nitrogen (334 mmol m−2) and phosphorus (56.6 mmol m−2) in July. The upper layers of the bottom appeared to be an enormous nutrient reservoir (94–99% of total) of which the largest part was not directly available to Nymphoides. Nutrient uptake from the sediments by N. peltata is suggested by the fact that the bottom and/or interstitial water of the sample station devoid of rooted macrophytes, contained higher concentrations of nitrogen and phosphorus than that of the Nymphoides stands. The annual flux of nutrients from Nymphoides to the detritus compartment was estimated to be ca. 1200 mmol nitrogen and 164 mmol phosphorus per m2 of littoral. During breakdown of the detritus there was a relatively fast net conversion of organically bound nitrogen and phosphorus to inorganic forms, especially at higher temperatures.Nymphoides has the potential to function as an important nitrogen and phosphorus pump, which regenerates sediment nutrients.  相似文献   

19.
Wang M  Shi S  Lin F  Hao Z  Jiang P  Dai G 《PloS one》2012,7(2):e30754

Background

Soil water and nitrogen (N) are considered to be the main environmental factors limiting plant growth and photosynthetic capacity. However, less is known about the interactive effects of soil water and N on tree growth and photosynthetic response in the temperate ecosystem.

Methods/Principal Findings

We applied N and water, alone and in combination, and investigated the combined effect of different water and N regimes on growth and photosynthetic responses of Fraxinus mandshurica seedlings. The seedlings were exposed to three water regimes including natural precipitation (CK), higher precipitation (HW) (CK +30%) and lower precipitation (LW) (CK −30%), and both with and without N addition for two growing seasons. We demonstrated that water and N supply led to a significant increase in the growth and biomass production of the seedlings. LW treatment significantly decreased biomass production and leaf N content, but they showed marked increases in N addition. N addition could enhance the photosynthetic capability under HW and CK conditions. Leaf chlorophyll content and the initial activity of Rubisco were dramatically increased by N addition regardless of soil water condition. The positive relationships were found between photosynthetic capacity, leaf N content, and SLA in response to water and N supply in the seedling. Rubisco expression was up-regulated by N addition with decreasing soil water content. Immunofluorescent staining showed that the labeling for Rubisco was relatively low in leaves of the seedlings under LW condition. The accumulation of Rubisco was increased in leaf tissues of LW by N addition.

Conclusions/Significance

Our study has presented better understanding of the interactions between soil water and N on the growth and photosynthetic response in F. mandschurica seedlings, which may provide novel insights on the potential responses of the forest ecosystem to climate change associated with increasing N deposition.  相似文献   

20.
Li Y  Yang H  Xia J  Zhang W  Wan S  Li L 《PloS one》2011,6(12):e28601

Background

The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.

Methodology/Principal Findings

In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.

Conclusion/Significance

The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号