首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trace elements in soils exist as components of several different fractions. We have analyzed the correlation between total and extractable (EDTA, calcium chloride and deionized water) Zn, Pb and Cu concentrations in soils and the concentration of these elements in plant leaves. Soil and plant samples have been taken from Sulcis-Iglesiente (Sardinia), an area rich in mining tailings. This has made that the concentrations of the trace element under study in soils were varied. Three plants have been studied: Dittrichia viscosa, Cistus salviifolius, and Euphorbia pithyusa subsp. cupanii. Soil samples beneath each of them at depths of 0–30 and 30–60 cm have been considered. The highest concentration of trace elements in the leaves of the studied species has been found for Zn. The calcium carbonate content and the crystalline and amorphous forms of iron in the soil have determined the concentration of metal in plant leaves. The soil concentrations that have been found with the extraction methods are uncorrelated with Pb and Cu concentrations in plants, but Zn is correlated with the fraction extracted with EDTA and calcium chloride. The concentrations of trace metals in plants are most closely related to the soil contents of CaCO3, electrical conductivity, Feox, and Fedc.  相似文献   

2.
Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats.  相似文献   

3.

Background and aims

The ionome (elemental composition) of grassland species has rarely been studied at the level of individual organs and little is known about effects of soil chemical properties on the ionome. Using the model oxalate plant Rumex obtusifolius, we asked how its biomass production and the distribution of elements between its organs is affected by soil chemical properties.

Methods

We established a pot experiment with R. obtusifolius planted in acidic non-contaminated control and in slightly acidic and alkaline soils anthropogenically contaminated by the risk elements As, Cd, Pb, and Zn. Both contaminated soils were untreated and treated by lime and superphosphate. We determined biomass production and the concentrations of elements in its organs.

Results

Biomass production was negatively related to the mobility of micro- and risk elements. Restricted transport of micro- and risk elements from belowground organs into leaves was recorded in untreated contaminated soils. In both lime-treated soils and in superphosphate-treated alkaline soil, elevated transport of micro- and risk elements from belowground organs into leaves was recorded in comparison to untreated contaminated soils. The lowest concentrations of micro- and risk elements were recorded in stems and seeds, followed by belowground organs and leaves.

Conclusions

R. obtusifolius is an As-, Cd-, Pb-, and Zn-excluder and is sensitive to high availability of micro- and risk elements in the soil. Soil chemical properties affect the distribution of essential elements within the plant greatly.  相似文献   

4.
Abstract

To analyze biomass and nutrient dynamics of Mediterranean seasonal dimorphic shrubs, aboveground biomass (AGB) and belowground biomass (BGB), litterfall (LF), aboveground net annual primary production (ANPP), and nutrient allocation and turnover were estimated in Cistus salviifolius and C. ladanifer, during two years, in southern Portugal. AGB, BGB, LF, and ANPP of C. salviifolius are within the range reported for other seasonal dimorphic plants, while those of C. ladanifer are closer to evergreen sclerophylls. Leaf renewal was higher for C. salviifolius than for C. ladanifer, especially for winter leaves, while root-to-shoot ratio and accumulation of live wood was greater in the latter. The concentrations of N, K, Ca, and Mg were lower in leaves of C. ladanifer than in those of C. salviifolius, suggesting less nutritive requirements for the former. Moreover, leaf nutrient translocation was higher in C. ladanifer than in C. salviifolius. Therefore, C. ladanifer shrubs seem to be more efficient with respect to carbon uptake, even during severe drought, while those of C. salviifolius act as weaker sinks more susceptible to the negative effects of drought. Additionally, C. ladanifer seems to have a competitive advantage in more arid conditions, as a great proportion of its annual nutrient requirement may derive from internal sources.  相似文献   

5.
Ater  M.  Lefèbvre  C.  Gruber  W.  Meerts  P. 《Plant and Soil》2000,218(1-2):127-135
Variation in plant elemental composition (Ni, Ca, Mg, Mg/Ca ratio) in relation to soil composition was investigated in a poorly studied ultramafic area in the north of Morocco. A total of 142 leaf samples representing 36 species from 9 sites (5 ultramafic and 4 normal soils from adjacent areas) were analysed. The soil was richer in Mg and Ni and had a higher Mg/Ca ratio in the ultramafic sites than in the control sites, and these differences were qualitatively reflected in the average mineral composition of the plants. However, there were considerable differences in mineral composition among species within serpentinic sites, indicating that species with contrasting mineral nutrition strategies can cope with the mineral element imbalance characteristic of ultramafic soils. Particularly noteworthy was the finding that species with high requirements of Ca are not excluded from serpentinic soils. In view of their high responsiveness to soil nickel and magnesium concentration, Dittrichia viscosa and Lavandula dentata are proposed as bioindicators of these elements in the soil in the Rif area. By contrast, two local serpentine endemics, Halimium atriplicifolium and Notholaena marantae were excluders of nickel and magnesium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The taxonomic positions of the subspecies of Bifidobacterium longum (B. longum subsp. longum, subsp. infantis, and subsp. suis) have been controversial. A current proposal is that the former two species “B. infantis” and “B. suis” be unified with B. longum and all three reclassified as three subspecies. To test this proposal, ribosomal protein profiling as observed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied to the classification of 17 strains of B. longum, including three subspecies. Among 41 different kinds of ribosomal proteins selected as biomarkers whose masses were calculated from their amino acid sequences, 31-41 ribosomal proteins were observed in sample strains with the same masses as the references. The high matching rate indicates high conservation of ribosomal proteins within the sample strains, and therefore strongly supports the unification of the former species. However, the masses of some ribosomal proteins varied within species. The phylogenetic tree constructed from the profiles of ribosomal proteins matched the references, showing a clear cluster of the subsp. longum and the subsp. infantis strains. This result supports the proposal to reclassify B. longum into subsp. longum and subsp. infantis. The subsp. suis strains formed an individual sub-cluster within the infantis cluster. However, their ribosomal proteins have both characters of longum and infantis types. This result suggests that the taxonomic position of the subsp. suis should be reconsidered.  相似文献   

7.
The genus Hypericum has received considerable interest from scientists, as it is a source of a variety of biologically active compounds including the hypericins. The present study was conducted to determine ontogenetic, morphogenetic and diurnal variation of the total hypericins content in some species of Hypericum growing in Turkey namely, Hypericum aviculariifolium subsp. depilatum var. depilatum (endemic), Hypericum perforatum and Hypericum pruinatum. The Hypericum plants were harvested from wild populations at vegetative, floral budding, full flowering, fresh fruiting and mature fruiting stages four times a day. Plants were dissected into stem, leaf and reproductive tissues, which were dried separately, and subsequently assayed for total hypericin content. The density of dark glands on leaves at full flowering plants was determined for each species. Floral parts had the highest hypericin content in all species tested. But diurnal fluctuation in the hypericin content of whole plant during the course of ontogenesis varied among the species. It reached the highest level at floral budding and tended to increase at night in H. aviculariifolium subsp. depilatum var. depilatum and H. pruinatum, whereas in H. perforatum hypericin content was the highest at full flowering and no diurnal fluctuation was observed. In general, hypericin content of leaves and whole plant was higher in H. aviculariifolium subsp. depilatum var. depilatum whose leaves had more numerous dark glands than those of the two other species.  相似文献   

8.
In the present study, the effectiveness of two plants, Medicago sativa L. and Dittrichia viscosa L., and a biostimulation method based on the use of an olive waste vermicompost, to restore the original quality of a trichloroethylene-contaminated soil was evaluated using eco-physiological profiles. These were designed in form of sun-ray plots by combining soil enzyme activities (dehydrogenase, alkaline phosphatase, β-glucosidase, urease and o-diphenol oxidase), bacterial population size via real-time PCR, Shannon diversity index values for PCR-denaturing gradient gel electrophoresis profiles, and genetic diversity θ(π) of the sequenced Proteobacteria of the different treatments. The eco-physiological profiles coupling biochemical and molecular parameters could be used as a valuable index for monitoring the success of a restoration scheme, estimating the quality of both contaminated and restored soils. Particularly remarkable was the interaction between vermicompost and D. viscosa, the only treatment that improved biochemical and microbiological restoration in such a way that an eco-physiological profile greater than that of the uncontaminated soil was noticed. The results showed the need to combine chemical analysis and microbiological measurements for evaluating the efficacy of soil remediation techniques.  相似文献   

9.
10.
We investigated the pattern of aluminum (Al) accumulation in leaf tissues of native hyperaccumulator Vochysiaceae species Qualea grandiflora,Callisthene major, and Vochysia pyramidalis, from the Brazilian Cerrado. Non-accumulator Sclerolobium paniculatum was used as a control species. We expected a strong compartmentalization of Al in non-active leaf cell compartments such as cell walls and vacuoles in Al-accumulating species and the absence of Al in critical metabolic sites such as the chloroplasts. Plant leaves were harvested in the field and cut in small segments for histological analysis; hematoxylin dye was used for Al localization in tissues. Results of soil analysis of the three sites and the concentration of Al in leaves indicated that there is no direct relationship between Al availability in soils and Al hyperaccumulation among the Vochysiaceae species evaluated. The cross-sections of leaf tissues showed hematoxylin color in the palisade and spongy parenchyma cells (chloroplast) of Q. grandiflora and C. major. The vascular system of Q. grandiflora was not colored, but some cells from the xylem region of C. major were stained. In contrast, the adaxial and abaxial epidermal cells of V. pyramidalis were colored by hematoxylin, as were some cells from the vascular bundle, but color formation was not observed in the cells of palisade parenchyma. Al was not detected in leaves of S. paniculatum. We concluded that, although hyperaccumulation of Al is a common trait in the Vochysiaceae family, the processes of storage and detoxification in leaf tissues differ among the species. Two of the three hyperaccumulator species use chloroplasts as a sink for Al, with no apparent signs of toxicity. Therefore, the physiological role of Al in plant tissues remains to be elucidated.  相似文献   

11.
干热河谷车桑子光合生理特性对氮磷添加的响应   总被引:1,自引:0,他引:1  
王雪梅  刘泉  闫帮国  赵广  刘刚才 《生态学报》2019,39(22):8615-8629
氮磷养分是限制干热河谷植物生长的重要元素,不同土壤上植物受到的养分限制类型不同。光合作用作为植物生长发育的基础,不同土壤上氮磷养分添加对干热河谷植物光合生理特征的影响还没有报道。因此,以干热河谷优势植物——车桑子为研究对象,在元谋县不同海拔处采集土壤,设置加氮(+N)、加磷(+P)、氮磷同时添加(+NP)和不添加(CK)四个处理,研究车桑子光合响应曲线、叶绿素含量和叶绿素荧光特性对氮、磷添加的响应规律,并探讨光合响应特征与车桑子生长的关系:研究结果显示:1)不同海拔土壤上,车桑子光合生理特性对氮磷添加具有不同的响应。在低海拔燥红土上,氮添加处理(+N和+NP)提高了车桑子净光合速率、叶绿素含量和PSII活性;中海拔紫色土上,+NP促进了车桑子光合速率和叶绿素含量的提高;高海拔黄棕壤上,+N处理降低了车桑子净光合速率和PSII活性,而磷添加处理(+P和+NP)提高了车桑子净光合速率。2)车桑子光合特性对养分添加的响应取决于土壤的养分限制类型,限制性养分添加可以提高车桑子的净光合速率。3)燥红土上+P以及黄棕壤上+N对PSⅡ最大光化学效率(Fv/Fm)的降低更大程度上归于可变荧光Fv的减少而不是最小荧光F0的增加,可减少养分限制对光系统II造成的伤害。4)三种土壤类型上车桑子的叶绿素含量和组成差异极显著,相比于燥红土和紫色土,黄棕壤上车桑子的叶绿素含量显著更高,而叶绿素a/b显著更低。综上,本研究结果表明,车桑子光合能力受到氮和磷的共同调节,不同土壤上光合生理特性的响应可增强植物对限制性养分的适应性,影响植物生长发育。  相似文献   

12.
Metalworking fluids (MWFs) are highly prone to microbial contamination, which leads to their degradation and biofouling. Pseudomonas oleovorans subsp. lubricantis, a newly described subspecies, was found to be important to MWF fouling. However, the actual distribution of P. oleovorans subsp. lubricantis in MWF is difficult to study using standard culturing techniques. To overcome this, a study was conducted to design a specific quantitative real-time PCR (qPCR) assay using TaqMan®MGB (minor groove binding) probe for its identification and estimated quantification in contaminated MWFs. The gyrB housekeeping gene sequence was selected for designing a TaqMan® MGB primer-probe pair using the Allele ID® 5.0 probe design software for the assay. Whole-cell qPCR was performed with MWF spiked directly with P. oleovorans subsp. lubricantis (eliminating DNA extractions using commercial kit); the primer-probe pair’s sensitivity was 101 colony forming units (CFU) ml−1. The assay provided no amplification with other closely related Pseudomonas species found in MWFs indicating its specificity. It was successful in identifying and enumerating P. oleovorans subsp. lubricantis from several used MWFs having between 104 and 106 CFU ml−1. The designed TaqMan® MGB probe thus can be successfully used for the subspecies-specific identification of P. oleovorans subsp. lubricantis and facilitates the study of its impact on MWFs.  相似文献   

13.
Ectomycorrhizal fungi (ECM) isolates of Pisolithus albus (Cooke and Massee) from nickel-rich ultramafic topsoils in New Caledonia were inoculated onto Acacia spirorbis Labill. (an endemic Fabaceae) and Eucalyptus globulus Labill. (used as a Myrtaceae plant host model). The aim of the study was to analyze the growth of symbiotic ECM plants growing on the ultramafic substrate that is characterized by high and toxic metal concentrations i.e. Co, Cr, Fe, Mn and Ni, deficient concentrations of plant essential nutrients such as N, P, K, and that presents an unbalanced Ca/Mg ratio (1/19). ECM inoculation was successful with a plant level of root mycorrhization up to 6.7%. ECM symbiosis enhanced plant growth as indicated by significant increases in shoot and root biomass. Presence of ECM enhanced uptake of major elements that are deficient in ultramafic substrates; in particular P, K and Ca. On the contrary, the ECM symbioses strongly reduced transfer to plants of element in excess in soils; in particular all metals. ECM-inoculated plants released metal complexing molecules as free thiols and oxalic acid mostly at lower concentrations than in controls. Data showed that ECM symbiosis helped plant growth by supplying uptake of deficient elements while acting as a protective barrier to toxic metals, in particular for plants growing on ultramafic substrate with extreme soil conditions. Isolation of indigenous and stress-adapted beneficial ECM fungi could serve as a potential tool for inoculation of ECM endemic plants for the successful restoration of ultramafic ecosystems degraded by mining activities.  相似文献   

14.
We investigated the role of fire and other potential biotic and abiotic determinants for the occurrence of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List. Populations of this species are threatened by the change of fire regime that has occurred during the last ten years. Fires and burnt areas are today less frequent and it is not clear whether other factors can compensate for such fire-free periods should this trend continue. We used a stratified random design to collect data on the cover of three growth stages, i.e., juvenile, chamaephytic and nanophanerophytic (oldest), of C. salviifolius, on plant communities, and on environmental factors. A tree-based discriminant analysis showed that the time elapsed since last fire was the best predictor of Cistus occurrence, but plants could survive on rocky and sunny sites if no fire had occurred for more than 32 years. Contrary to our expectations, the number of fires and time elapsed since the last event was correlated with the oldest stages only, and not with that of seedlings or juveniles. Rank correlations showed that bare soil was a good predictor of young stages, whereas rocky outcrops and shallow soils were important for the chamaephytic stage. Our results confirm the role of disturbances and competition-free habitats as determinants of the survival of this vulnerable pyrophyte during long periods without fires and the existence of ontogenetic niche segregation of this species. In order to maintain viable C. salviifolius populations in the Alps, managers should undertake conservation actions according to the requirements of the different growth stages of this species.  相似文献   

15.
The effect of soil type on population densities of plant parasitic nematode species in 17 field blocks of four different soil types rotated to corn, soybeans, wheat, and forage mixtures was investigated during a generally droughty 5-year period. High densities of Helicotylenchus pseudorobustus were found in dark silty clay loams. Highest densities of Tylenchorhynchus acutus were also in one of the dark-colored silty clay loams. Light-colored silt loams favored development of Paratylenchus projectus, which developed poorly in the darker soils. Comparable densities of Xiphinema americanum were found in all soils and on all crops, regardless of soil type. Tylenchorhynchus martini, although present, did not build up in any of the soils. Populations of Pratylenchus species were generally low in the rotated blocks of all soil types.  相似文献   

16.
Nitrate reductase activity (NRA) in different compartments (leaves, inflorescence stalks, flowers and tuberous roots) of Asphodelus aestivus Brot. (Liliaceae) and actual mineral nitrogen (NO3-N and NH4+-N) in soil surrounding the roots were investigated over one year. Although the highest NRA was found in the leaves, the other plant compartments, such as flowers and tuberous roots, also have nitrate assimilation capacity. High nitrate assimilation capacity under suitable conditions is considered to be a good strategy for development and dominance of this species in Mediterranean environments. There was a seasonal variation in nitrate assimilation in leaves and actual NO3-N content of soils. Depending on actual nitrate content of soils, nitrate assimilation increased in winter.  相似文献   

17.
In Europe, high phosphorus (P) concentrations form the most important constraint on the ecological restoration of biodiverse vegetation on former agricultural soils, because they lead to dominance of highly competitive species like Juncus effusus or to algal blooms in flooded situations. Top soil removal is often not sufficient or not possible, so alternative methods have to be found. We therefore investigated whether modified bentonite clay to which 5% lanthanum had been added (LMC) and lime could effectively decrease bioavailable P and phosphate mobilization to the water layer in different soil types.A container experiment was performed using peaty and sandy soils with different Olsen-P concentrations, mixed with different doses of LMC and lime. The soils were exposed to two different common water regimes (moist and flooded). J. effusus seedlings were used as phytometers.Addition of LMC and lime lowered extractable P concentrations in some of the P-rich sandy soils. Only the highest LMC dose was able to decrease phosphate mobilization to the water layer in the sandy soils. However, neither LMC nor lime was sufficiently effective in reducing Olsen-P concentrations and J. effusus growth. Lime addition eventually even led to additional nutrient mobilization by alkalinization and increased mineralization of the soil.Our experiments therefore show that LMC and lime are not feasible alternatives to top soil removal, because they are inefficient in preventing dominance of highly competitive species under moist or shallowly flooded conditions. LMC may only be used to prevent phosphate mobilization to the water layer in deeply flooded situations, which may allow for a more biodiverse vegetation development.  相似文献   

18.
Microbial diversity was assessed in the soils of non-polluted rice fields of Central Rice Research Institute and Choudwar, and textile effluent contaminated (about 30 years) rice fields of Choudwar about 4 years after cessation of pollution. The soils contained 0.62–1.01 % organic C and 0.07–0.12 % total N, and measured 6.18–8.24 pH and 0.6–2.68 mS/cm Eh which were more in the polluted Choudwar soil. The microbial populations (×106 cfu/g soil) in the soils were: heterotrophs 1.21–10.9, spore formers 0.9–2.43, Gram (−)ve bacteria 4.11–8.0, nitrifiers 0.72–1.5, denitrifiers 0.72–2.43, phosphate solubilizers 0.14–0.9, asymbiotic nitrogen fixers 0.34–0.59, actinomycetes 0.07–0.11, fungi 0–0.5 and Bacillus thuringiensis (Bt) 0.4–0.61 which predominated in the polluted soil of Choudwar. The fungi were scarce in the polluted rice fields. The Bt isolates belonged to three motile and one non-motile group. Two motile Bt isolates were phenotyped as Bt subsp. sotto and israelensis, whereas, the non-motile isolate was Bt subsp. wahuensis. All Bt isolates produced extracellular protease, lipase and amylase enzymes. The microbial guilds had positive correlation among themselves, as well as, with soil physico-chemical characters but the fungi had negative relation and the nitrogen fixers were unrelated with the biotic and abiotic components.  相似文献   

19.
Mesorhizobium muleiense, Mesorhizobium mediterraneum and Mesorhizobium ciceri are chickpea (Cicer arietinum L.) rhizobia that share a high similarity of the symbiotic genes nodC and nifH, but they have different geographic distributions. M. muleiense has been isolated and found only in alkaline soils of Xinjiang, China, whereas the other two strains have been found in the Mediterranean and India. To investigate the species stability of M. muleiense during natural evolution and its capability of competitive nodulation against the other two exotic species, re-sampling of nodules in the field and competition experiments between the three species were conducted. The results showed that the predominant microsymbiont associated with chickpea grown in Xinjiang was still M. muleiense, but the predominant genotypes of M. muleiense had changed significantly during the four years since a previous survey. The data also showed that M. mediterraneum and M. ciceri were more competitive than the residential strain of M. muleiense CCBAU 83963T in sterilized vermiculite or soils from Xinjiang. However, in non-sterilized soils, M. muleiense was the predominant nodule occupier. These results indicated that natural or adapting evolution of M. muleiense was occurring in fields subjected to changing environmental factors. In addition, the biogeography and symbiotic associations of rhizobia with their host legumes were also influenced by biological factors in the soil, such as indigenous rhizobia and other organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号