首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.  相似文献   

2.
T Gridley 《The New biologist》1991,3(11):1025-1034
Recent innovations in mutagenesis techniques for mice have the potential to revolutionize the molecular genetic analysis of mouse development. Insertional mutagenesis by the introduction of exogenous DNA into the mouse germline hs permitted the molecular cloning and analysis of several novel genes important for early embryonic development. Targeted mutagenesis by homologous recombination in embryonic stem cells permits, in theory, the production of mutations in any cloned gene. The complementary information being obtained from these two mutagenesis procedures is shedding new light on the genes important for early mouse development, and the roles these genes play in that process.  相似文献   

3.
Chemical mutagenesis of the mouse is ongoing in several centers around the world, with varying estimates of mutation rate and number of sites mutable to phenotype. To address these questions, we sequenced approximately 9.6 Mb of DNA from G1 progeny of ethylnitrosourea-treated mice in a large, broad-spectrum screen. We identified 10 mutations at eight unique sites, including six nonsynonymous coding substitutions. This calibrates the nucleotide mutation rate for two mutagenesis centers, implies significance criteria for positional cloning efforts, and provides working estimates of effective genetic target sizes for selected phenotypes.  相似文献   

4.
Mutagenesis of mice with N-ethyl-N-nitrosourea (ENU) is a phenotype-driven approach to unravel gene function and discover new biological pathways. Phenotype-driven approaches have the advantage of making no assumptions about the function of genes and their products and have been successfully applied to the discovery of novel gene-phenotype relationships in many physiological systems. ENU mutagenesis of mice is used in many large-scale and more focused projects to generate and identify novel mouse models for the study of gene functions and human disease. This review examines the strategies and tools used in ENU mutagenesis screens to efficiently generate and identify functional mutations.  相似文献   

5.
Systematic approaches to mouse mutagenesis will be vital for future studies of gene function. We have begun a major ENU mutagenesis program incorporating a large genome-wide screen for dominant mutations. Progeny of ENU-mutagenized mice are screened for visible defects at birth and weaning, and at 5 weeks of age by using a systematic and semi-quantitative screening protocol—SHIRPA. Following this, mice are screened for abnormal locomotor activity and for deficits in prepulse inhibition of the acoustic startle response. Moreover, in the primary screen, blood is collected from mice and subjected to a comprehensive clinical biochemical analysis. Subsequently, secondary and tertiary screens of increasing complexity can be used on animals demonstrating deficits in the primary screen. Frozen sperm is archived from all the male mice passing through the screen. In addition, tail tips are stored for DNA. Overall, the program will provide an extensive new resource of mutant and phenotype data to the mouse and human genetics communities at large. The challenge now is to employ the expanding mouse mutant resource to improve the mutant map of the mouse. An improved mutant map of the mouse will be an important asset in exploiting the growing gene map of the mouse and assisting with the identification of genes underlying novel mutations—with consequent benefits for the analysis of gene function and the identification of novel pathways. Received: 16 December 1999 / Accepted: 16 December 1999  相似文献   

6.
Most traits of biological importance, including traits for human complex diseases (e.g., obesity and diabetes), are continuously distributed. These complex or quantitative traits are controlled by multiple genetic loci called QTLs (quantitative trait loci), environments and their interactions. The laboratory mouse has long been used as a pilot animal model for understanding the genetic architecture of quantitative traits. Next-generation sequencing analyses and genome-wide SNP (single nucleotide polymorphism) analyses of mouse genomes have revealed that classical inbred strains commonly used throughout the world are derived from a few fancy mice with limited and non-randomly distributed genetic diversity that occurs in nature and also indicated that their genomes are predominantly Mus musculus domesticus in origin. Many QTLs for a huge variety of traits have so far been discovered from a very limited gene pool of classical inbred strains. However, wild M. musculus mice consisting of five subspecies widely inhabit areas all over the world, and hence a number of novel QTLs may still lie undiscovered in gene pools of the wild mice. Some of the QTLs are expected to improve our understanding of human complex diseases. Using wild M. musculus subspecies in Asia as examples, this review illustrates that wild mice are untapped natural resources for valuable QTL discovery.  相似文献   

7.
We used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for both gene function studies and use as new animal models of human disease (Nolan et al. 2000b). One focus of the program was the development of a blood biochemistry screen. At 8-12 weeks of age, approximately 300 ml of blood was collected from F1 offspring of ENU mutagenized male mice. This yielded approximately 125 ml of plasma, used to perform a profile of 17 standard biochemical tests on an Olympus analyzer. Cohorts of F1 mice were also aged and then retested to detect late onset phenotypes. In total, 1,961 F1s were screened. Outliers were identified by running means and standard deviations. Of 70 mice showing consistent abnormalities in plasma biochemistry, 29 were entered into inheritance testing. Of these, 9 phenotypes were confirmed as inherited, 10 found not to be inherited, and 10 are still being tested. Inherited mutant phenotypes include abnormal lipid profiles (low total and HDL cholesterol, high triglycerides); abnormalities in bone and liver metabolism (low ALP, high ALP, high ALT, and AST); abnormal plasma electrolyte levels (high sodium and chloride); as well as phenotypes of interest for the study of diabetes (high glucose). The gene loci bearing the mutations are currently being mapped and further characterized. Our results have validated our biochemical screen, which is applicable to other mutagenesis projects, and we have produced a new set of mutants with defined metabolic phenotypes.  相似文献   

8.
The mouse is the premier genetic model organism for the study of human disease and development. With the recent advances in sequencing of the human and mouse genomes, there is strong interest now in large-scale approaches to decipher the function of mouse genes using various mutagenesis technologies. This review discusses what tools are currently available for manipulating and mutagenizing the mouse genome, such as ethylnitrosourea and gene trap mutagenesis, engineered inversions and deletions using the cre-lox system, and proviral insertional mutagenesis in somatic cells, and how these are being used to uncover gene function. Electronic Publication  相似文献   

9.
M Dion  G Rapoport  J Doly 《Biochimie》1989,71(6):747-755
The mouse interferon alpha 7 gene, the signal sequence of which has been removed by oligonucleotide-directed mutagenesis, was introduced into a Bacillus subtilis secretion vector containing the promoter and the signal sequence of the B. subtilis levansucrase gene. Different B. subtilis strains were transformed with the fused levansucrase-interferon gene; their cell extracts and culture supernatants tested for antiviral activity and the IFN alpha 7 protein showed the presence of IFN alpha 7 only in the cell extracts. To promote IFN alpha 7 secretion, constructs were realized in order to restore the alpha helix conformation of the signal sequence of levansucrase and interferon protein junction. Our results suggest that factors other than the structure of the peptide around the cleavage site are involved in the secretion of IFN alpha 7 by B. subtilis.  相似文献   

10.
A line of mutant mice (114-CH19) exhibiting white spotting and preweaning lethality was identified during an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. The trait segregated as a semidominant bellyspot with reduced penetrance. Homozygous mutant mice showed preweaning lethality, and exhibited white spotting over the majority of the body surface, with pigmented patches remaining around the pinnae, eyes and tail. Linkage analysis localized 114-CH19 on mouse chromosome 2, suggesting endothelin 3 (Edn3) as a candidate gene. Sequence analysis of Edn3 identified a G > A transversion that encodes an arginine to histidine substitution (R96H). This mutation is predicted to disrupt furin-mediated proteolytic cleavage of pro-endothelin that is necessary to form biologically active EDN3. This mutation is novel among human and mouse EDN3 mutants, is the first reported EDN3 ENU mutant, and is the second reported EDN3 point mutation. This study demonstrates the power of using ENU mutagenesis screens to generate new animal models of human disease, and expands the spectrum of EDN3 mutant alleles.  相似文献   

11.
The goal of this study was to investigate the normal MRI appearance of lymphoid organs in immuno-competent and immuno-deficient mice commonly used in research. Four mice from each of four different mouse strains (nude, NOG, C57BL/6, CB-17 SCID (SCID)) were imaged weekly for one month. Images were acquired with a 3D balanced steady state free precession (bSSFP) sequence. The volume of the lymph nodes and spleens were measured from MR images. In images of nude and SCID mice, lymph nodes sometimes contained a hyperintense region visible on MRI images. Volumes of the nodes were highly variable in nude mice. Nodes in SCID mice were smaller than in nude or C57Bl/6 mice (p<0.0001). Lymph node volumes changed slightly over time in all strains. The spleens of C57Bl/6 and nude mice were similar in size and appearance. Spleens of SCID and NOG mice were significantly smaller (p<0.0001) and abnormal in appearance. The MRI appearance of the normal lymph nodes and spleen varies considerably in the various mouse strains examined in this study. This is important to recognize in order to avoid the misinterpretation of MRI findings as abnormal when these strains are used in MRI imaging studies.  相似文献   

12.
Medical research has a heavy and continuing demand for rodent models across a range of disciplines. Behavioural assessment of pain in such models is highly time consuming, thus limiting the number of models and analgesics that can be studied. Facial expressions are widely used to assess pain in human infants. Recently the mouse grimace scale (MGS) has been developed and shown to be accurate and reliable, requiring only a short amount of training for the observer. This system therefore has the potential to become a highly useful tool both in pain research and clinical assessment of mouse pain. To date, the MGS has only been used as a research tool, however there is increasing interest in its use in cage-side clinical assessment. It is often wrongly assumed that MGS scores of animals not in pain (i.e. at baseline) are zero. Here, we aimed to assess the variability in baseline MGS scores between cohorts, sexes and strains of mice. Establishing the presence of a consistent baseline MGS score could lead to a valuable clinical pain assessment tool for mice when baseline information from the individual mouse may not be available as a comparator. Results demonstrated a significant difference in baseline MGS scores between both sexes (males > females) and strains of mice. The method used to score the facial action units (Live vs. retrospectively from still images) demonstrated significant differences in scores with live scores being significantly lower than retrospective scoring from images. The level of variation shown demonstrates the need for further research to be undertaken with regard to establishing baseline MGS scores for specific strains and sexes of mice, taking into account the method of scoring, prior to considering clinical implementation of this method in pain assessment.  相似文献   

13.
Xenotropic murine leukemia virus-related virus (XMRV) was previously reported to be associated with human prostate cancer and chronic fatigue syndrome. Our groups recently showed that XMRV was created through recombination between two endogenous murine retroviruses, PreXMRV-1 and PreXMRV-2, during the passaging of a prostate tumor xenograft in nude mice. Here, multiple approaches that led to the identification of PreXMRV-2, as well as the distribution of both parental proviruses among different mouse species, are described. The chromosomal loci of both proviruses were determined in the mouse genome, and integration site information was used to analyze the distribution of both proviruses in 48 laboratory mouse strains and 46 wild-derived strains. The strain distributions of PreXMRV-1 and PreXMRV-2 are quite different, the former being found predominantly in Asian mice and the latter in European mice, making it unlikely that the two XMRV ancestors could have recombined independently in the wild to generate an infectious virus. XMRV was not present in any of the mouse strains tested, and among the wild-derived mouse strains analyzed, not a single mouse carried both parental proviruses. Interestingly, PreXMRV-1 and PreXMRV-2 were found together in three laboratory strains, Hsd nude, NU/NU, and C57BR/cd, consistent with previous data that the recombination event that led to the generation of XMRV could have occurred only in the laboratory. The three laboratory strains carried the Xpr1(n) receptor variant nonpermissive to XMRV and xenotropic murine leukemia virus (X-MLV) infection, suggesting that the xenografted human tumor cells were required for the resulting XMRV recombinant to infect and propagate.  相似文献   

14.
Restriction fragment polymorphisms were used to order the alpha A-crystallin locus (Crya-1) relative to other genes in mouse t-chromatin and to investigate the relatedness of alpha-A-crystallin sequences among different t-haplotypes. Analysis of DNA from t-recombinant mice mapped Crya-1 to the K end of the H-2 complex and within the distal inverted region characteristic of t-haplotypes. Hybridization with Crya-1 cDNA revealed three distinct phenotypic groups among the 17 different t-haplotypes studied. A majority (9 of 17) of the t-haplotypes were classified into a novel group (Crya-1t) characterized by restriction fragments apparently unique to t-chromosomes and therefore thought to contain alpha A-crystallin sequences descended from the original t-chromosome. A second group of t-haplotypes had restriction fragment patterns indistinguishable from those observed among many common inbred strains of mice of the Crya-1a type, and a third restriction fragment pattern, observed only in the tw121 haplotype, was indistinguishable from the fragment pattern for C3H/DiSn (Crya-1b) and several other inbred strains of mice. Thus, with respect to sequences around the Crya-1 locus, different t-haplotypes show restriction fragment polymorphisms, some of which are comparable to those found in wild-type chromosomes and provide further evidence for genetic heterogeneity in DNA from the distal region of t-haplotypes.  相似文献   

15.
ENU is a powerful germline mutagen in the mouse, providing the opportunity to analyze the functions of large numbers of genes in the mammalian genome. In many mutagenesis experiments, it would be beneficial to exploit the advantages of inbred mouse strains. To perform an effective ENU mutagenesis screen using inbred mice, a dosage regimen is required to determine the optimal dose of ENU for that inbred strain, a time-consuming preliminary process. We have carried out dosage regimens for mutagenizing doses of ENU in ten inbred strains of mouse: 129X1/SvJ, 129S6/SvEv, A/J, BALB/cJ, BTBR/N, C3He/J, C3HeB/FeJ, C57BL/6J, C57BR/cdJ, and CBA/CaJ, and determined an optimal dose for each strain, defined by length of sterile period and number of males to survive treatment. Three strains: A/J, BALB/cJ and C57BL/6J, are able to tolerate high doses, up to 300 mg/kg body weight, and are highly recommended for mutagenesis studies.  相似文献   

16.
The rapid development and characterization of the mouse genome sequence, coupled with comparative sequence analysis of human, has been paralleled by a reinforced enthusiasm for mouse functional genomics. The way to uncover the in vivo function of genes is to analyze the phenotypes of the mutant animals. From this standpoint, the mouse is a suitable and valuable model organism in the studies of functional genomics. Therefore, there have been enormous efforts to enrich the list of the mutant mice. Such a trend emphasizes the random mutagenesis, including ENU mutagenesis and gene-trap mutagenesis, to obtain a large stock of mutant mice. However, since various mutant alleles are needed to precisely characterize the role of a gene in vivo, mutations should be designed. The simplicity and utility of transgenic technology can satisfy this demand. The combination of RNA interference with transgenic technology will provide more opportunities for researchers. Nevertheless, gene targeting can solely define the in vivo function of a gene without a doubt. Thus, transgenesis and gene targeting will be the major strategies in the field of functional genomics.  相似文献   

17.
目的建立小鼠胚胎与配子冷冻库,以安全、有效地保存小鼠资源。方法选择不同遗传背景(近交系、远交群、免疫缺陷、疾病模型和基因改变等)的实验小鼠,系统进行了超数排卵、体外受精(IVF)率、胚胎与精子的冷冻复苏效果、卵巢冷冻与移植、辅助体外受精等比较研究。结果①小鼠年龄和遗传背景的不同,其超数排卵的结果也不同(P〈0.01)。三个日龄段中,28日龄最好,其次为112日龄,56日龄最差;不同遗传背景小鼠的超数排卵结果显示,封闭群和大部分近交系小鼠优于转基因小鼠(P〈0.05),自发性疾病小鼠和基因剔除小鼠的结果最差;②不同品系小鼠的新鲜精子和冻融精子的体外受精率差异有显著性(P〈0.05),特别是C57BL/6J小鼠冻融精子的IVF率(10.3±4.2%)与新鲜精子(89.8±4.8%)相比,差异极显著(P〈0.01);③不同品系小鼠的胚胎复苏率,除MRL/mp小鼠的复苏率略低外,其他小鼠品系均有较高的冷冻胚胎复苏率(58.2%~83.9%),表明,不同遗传背景小鼠之间差异有显著性(P〈0.05),但均可以达到有效保存小鼠资源的目的。④小鼠的遗传背景、年龄等对小鼠精子的冷冻效果都有影响,采用改良的FERTIUP冷冻保护剂和细胞质内单精注射(ICSI)技术可有效提高以C57BL/6J为背景的基因改变小鼠的精子冷冻复苏率。⑤卵巢冷冻保存可以改善雌性小鼠的繁殖困难或不孕。结论小鼠资源的安全保存,除了长期连续繁殖保种外,最好的或最保险的方法是低温保存。通过将胚胎、配子、卵巢等长期保存在液氮(-196℃)中避免遗传性状的改变,并在将来复苏后获得正常的小鼠后代,以用于生物学和医学等研究。  相似文献   

18.
Recent advances in high-throughput gene targeting and conditional mutagenesis are creating new and powerful resources to study the in vivo function of mammalian genes using the mouse as an experimental model. Mutant ES cells and mice are being generated at a rapid rate to study the molecular and phenotypic consequences of genetic mutations, and to correlate these study results with human disease conditions. Likewise, classical genetics approaches to identify mutations in the mouse genome that cause specific phenotypes have become more effective. Here, we describe methods to quickly obtain information on what mutant ES cells and mice are available, including recombinase driver lines for the generation of conditional mutants. Further, we describe means to access genetic and phenotypic data that identify mouse models for specific human diseases.  相似文献   

19.
In mice, the loxP/Cre recombinase-dependent system of recombination offers powerful possibilities for engineering genetic configurations of interest. This system can also be advantageously used for conditional mutagenesis in vivo, whenever such an approach is required due to deleterious effects of either one mutation, or a combination thereof. Here, we report on the production of an allelic series of insertions of a Hoxd11/Cre fusion transgene at different positions within the HoxD complex, in order to produce the CRE recombinase with a 'Hox profile' progressively more extended. We used the R26R (R26R) reporter mouse line to functionally assess the distribution and efficiency of the CRE enzyme and discuss the usefulness of these various lines as deleter strains.  相似文献   

20.
Paired receptors are groups of closely related membrane proteins that have the potential to either inhibit or activate. The CD200R family consists of one inhibitory member, CD200R and various numbers of activating genes according to species with three defined in C57BL/6 mice. A genomic PCR strategy was used to examine the repertoire of genes in both laboratory and wild-derived mice. Most mouse strains tested (18/22) had three activating genes, and 16 of these had either the combination of CD200RLa, Lb, and Lc or CD200RLa, Lb, and Le. The Lc and Le genes were mutually exclusive and were equally common (10 strains). Wild-derived mice varied more with one example of strains with one, two, and four activating genes. An inhibitory CD200R gene was detected in each mouse strain, although two slightly different sequences were found in both laboratory and wild-derived mice. This diversity is probably being driven by pathogens but is less extensive than for many NK paired receptors such as KIR and Ly49. It is possible that myeloid paired receptors are involved in immune regulation of responses against pathogens rather than directly killing infected cells as for NK cells and, hence, under less intense evolutionary pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号