首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system.

Methods

Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008.

Key Results

Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments.

Conclusions

Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can influence green roof functions.  相似文献   

2.
Extensive green roofs composed of a thin layer of growing medium topped with vegetation can significantly reduce both the timing and magnitude of stormwater runoff relative to a typical impervious roof. However, regional climatic conditions such as seasonality in rainfall and potential evapotranspiration could strongly alter the stormwater performance of green roofs. In this study we evaluate the stormwater performance of green roofs in the predominately winter rainfall climate of the U.S. Pacific Northwest. We also test whether the amount of irrigation used to maintain green roof vegetation in a seasonally dry climate such as the Pacific Northwest influences stormwater performance. We monitored stormwater performance over one year for sets of experimental roofs constructed using three designs: a conventional impervious design, a medium-only design, and a typical extensive green roof design that included vegetation. During the winter rainy season vegetation had no significant influence on stormwater retention; medium-only and vegetated roofs reduced stormwater runoff nearly identically relative to the impervious roofs. In contrast, during summer vegetated roofs retained significantly more rainfall than medium-only roofs, although this effect depended strongly on the size of the rain event. In addition, total relative retention for both roof types was significantly higher during summer than during winter. Irrigation significantly reduced summer retention capacity of both medium-only and planted roofs, but only during the largest dry season rain event. These results suggest that cool wet season climates such as the Pacific Northwest are challenging ones for green roof stormwater performance. In order to optimize stormwater benefits of green roofs, designers should create explicitly regional designs that include plant selections better matched to the specific environmental and management constraints.  相似文献   

3.
Impervious surfaces, such as rooftops, parking lots, and roads, increase runoff and the potential for flooding. Green roof technologies, which entail growing plants on rooftops, are increasingly being used to alleviate stormwater runoff problems. To quantify the effect that roof slope has on green roof stormwater retention, runoff was analyzed from 12 extensive green roof platforms constructed at four slopes (2%, 7%, 15%, and 25%). Rain events were categorized as light (<2.0 mm) (0.08 in.), medium (2.0–10.0 mm) (0.08–0.39 in.), or heavy (>10.0 mm) (>0.39 in.). Data demonstrated an average retention value of 80.8%. Mean retention was least at the 25% slope (76.4%) and greatest at the 2% slope (85.6%). In addition, runoff that did occur was delayed and distributed over a long period of time for all slopes. Curve numbers, a common method used by engineers to estimate stormwater runoff for an area, ranged from 84 to 90, and are all lower than a conventional roof curve number of 98, indicating that these greened slopes reduced runoff compared to traditional roofs.  相似文献   

4.
Runoff quantity and quality from a 248 m2 extensive green roof and a control were compared in Connecticut using a paired watershed study. Weekly and individual rain storm samples of runoff and precipitation were analyzed for TKN, NO3 + NO2-N, NH3-N, TP, PO4-P, and total and dissolved Cu, Pb, Zn, Cd, Cr, and Hg. The green roof watershed retained 51.4% of precipitation during the study period based on area extrapolation. Overall, the green roof retained 34% more precipitation than predicted by the paired watershed calibration equation. TP and PO4-P mean concentrations in green roof runoff were higher than in precipitation but lower than in runoff from the control. The green roof was a sink for NH3-N, Zn, and Pb, but not for TP, PO4-P, and total Cu. It also reduced the mass export of TN, TKN, NO3 + NO2-N, Hg, and dissolved Cu primarily through a reduction in stormwater runoff. Greater than 90% of the total Cu, Hg, and Zn concentrations in the green roof runoff were in the dissolved form. The growing media and slow release fertilizer were probable sources of P and Cu in green roof runoff. Overall, the green roof was effective in reducing stormwater runoff and overall pollutant loading for most water quality contaminants.  相似文献   

5.
亚热带季风区城市典型绿化屋顶的径流削减效应   总被引:1,自引:0,他引:1  
屋顶绿化能够削减暴雨径流,降低城市内涝发生频率,促进可持续雨洪管理。针对亚热带季风气候区典型绿化屋顶的全年径流削减效应,以南京为研究区,以简易型、花园型两类绿化屋顶为研究对象,基于1年现场观测数据及水量平衡方程,分析屋顶雨水的滞蓄、蒸发与径流量随季节变化规律及其关键影响因子,采用SCS-CN模型计算绿化屋面的径流曲线数(CN),并估算城市尺度大面积屋顶绿化的暴雨径流削减效果。结果显示,简易型、花园型绿化屋顶全年径流削减率分别为42%和60.7%;径流削减效应的四季排序为春季冬季秋季夏季,平均径流削减率依次为78.6%、47.5%、33.2%、32.9%(简易型)及98%、84.3%、49.5%、48.1%(花园型);土壤基质层对雨水截留起主导作用,分别占径流削减总量的52%和62%;雨量和雨强是影响径流削减效应的关键因子,与径流削减率均呈显著负相关关系(P0.01),初始土壤湿度与简易型绿化屋顶的径流削减率呈显著负相关(0.01P0.05),但与花园型的径流削减率无显著相关性;基于全年77次降雨事件的降雨量-径流量数据测算得到简易型和花园型绿化屋顶的CN值分别为92和88;若南京主城区所有建筑屋顶面积的60%实施两类绿化,则其全年径流量可分别削减2.8×10~7 m~3和4.2×10~7 m~3。以上研究结果可为城市雨洪管理和海绵城市建设提供科学依据。  相似文献   

6.

Background and aims

Green roofs are often installed to reduce urban stormwater runoff. To optimally achieve this, green roof plants need to use water when available, but reduce transpiration when limited to ensure survival. Succulent species commonly planted on green roofs do not achieve this. Water availability on green roofs is analogous to natural shallow-soil habitats including rock outcrops. We aimed to determine whether granite outcrop species could improve green roof performance by evaluating water use strategies under contrasting water availability.

Methods

Physiological and morphological responses of 12 granite outcrop species with different life-forms (monocots, herbs and shrubs) and a common green roof succulent were compared in well watered (WW) and water deficit (WD) treatments.

Key results

Granite outcrop species showed a variety of water-use strategies. Unlike the green roof succulent all of the granite outcrop species showed plasticity in water use. Monocot and herb species showed high water use under WW but also high water status under WD. This was achieved by large reductions in transpiration under WD. Maintenance of water status was also related to high root mass fraction.

Conclusions

By developing a conceptual model using physiological traits we were able to select species suitable for green roofs. The ideal species for green roofs were high water users which were also drought tolerant.  相似文献   

7.
In urban environments, green roofs provide a number of benefits, including decreased urban heat island effects and reduced energy costs for buildings. However, little research has been done on the non-plant biota associated with green roofs, which likely affect their functionality. For the current study, we evaluated whether or not green roofs planted with two native plant communities in New York City functioned as habitats for soil fungal communities, and compared fungal communities in green roof growing media to soil microbial composition in five city parks, including Central Park and the High Line. Ten replicate roofs were sampled one year after planting; three of these roofs were more intensively sampled and compared to nearby city parks. Using Illumina sequencing of the fungal ITS region we found that green roofs supported a diverse fungal community, with numerous taxa belonging to fungal groups capable of surviving in disturbed and polluted habitats. Across roofs, there was significant biogeographical clustering of fungal communities, indicating that community assembly of roof microbes across the greater New York City area is locally variable. Green roof fungal communities were compositionally distinct from city parks and only 54% of the green roof taxa were also found in the park soils. Phospholipid fatty acid analysis revealed that park soils had greater microbial biomass and higher bacterial to fungal ratios than green roof substrates. City park soils were also more enriched with heavy metals, had lower pH, and lower quantities of total bases (Ca, K, and Mg) compared to green roof substrates. While fungal communities were compositionally distinct across green roofs, they did not differentiate by plant community. Together, these results suggest that fungi living in the growing medium of green roofs may be an underestimated component of these biotic systems functioning to support some of the valued ecological services of green roofs.  相似文献   

8.
Suspended solids in and turbidity of runoff from green roofs   总被引:1,自引:0,他引:1  
Green roof technology is used to reduce the quantity of stormwater runoff, but questions remain regarding its impact on quality. This study analyzed the total suspended solids (TSS) in and the turbidity of runoff from green roof growth media mixed with composted pine bark in an indoor pot study. The results showed that there were elevated levels of TSS and turbidity in the runoff that decreased over time for all growth media. Both TSS and turbidity are affected by the type of growth media. Lava and haydite had higher mean TSS and mean turbidity than arkalyte and bottom ash. Vegetation reduced the mean turbidity and mean TSS of the first flush by an average of 53% and 63%, respectively, but generally had no statistically significant effect thereafter. The results indicate that the media, rather than the vegetation, has a greater effect on TSS and turbidity in the runoff In areas with stringent water quality regulations for stormwater runoff from developed sites, media selection may be an important consideration. It may also be necessary in these regions to ensure that the roof is planted prior to receiving rainfall to minimize the first flush effect and that any irrigation does not result in runoff.  相似文献   

9.

Background

Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions.

Methodology/Principal Findings

We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well.

Conclusions/Significance

Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green roof ecosystems.  相似文献   

10.
绿色屋面降雨径流水质及消减污染负荷研究   总被引:5,自引:0,他引:5  
2011年5月至11月对12场降雨时段的屋面径流和干湿沉降进行采样监测,比较了屋面径流(绿色屋面和沥青屋面)、干湿总沉降和降雨中污染物的浓度和污染负荷,并运用多元统计方法分析了降雨特征对绿色屋面径流水质的影响。结果表明,从径流水质层面上分析,绿色屋面是总悬浮物(TSS)的汇,对p H值有较好的中和作用,对于总磷(TP)、溶解态铜(DCu)和溶解态锌(DZn)是非源非汇,是电导率(EC)、总氮(TN)、氨态氮(NH+4-N)、硝态氮(NO-3-N)、化学需氧量(COD)、5日生化需氧量(BOD5)和溶解态铅(DPb)的源;从污染负荷的角度分析,绿色屋面是NH+4-N、TSS和BOD5的汇,对于TN、DPb、DCu、DZn、TP和COD是非源非汇,是NO-3-N的源;与控制屋面相比,绿色屋面可以消减TSS、TP、BOD5、COD、NH+4-N、DZn和DPb的污染负荷,分别消减了90.53%、49.38%、41.31%、36.48%、35.45%、28.27%和14.20%;但是增加了NO-3-N和TN的污染负荷,分别增加了821.02%和275.48%;绿色屋面径流污染物的浓度与降雨量、降雨历时和降雨强度呈负相关关系,而与降雨间隔呈正相关关系。研究结果为绿色屋面的科学设计及正确评价绿色屋面对径流水质的影响提供依据。  相似文献   

11.
Sweetclover (Melilotus alba) is a non-native legume that has formed dense and extensive patches along several rivers in Alaska. Our research objective was to determine if sweetclover impacts recruitment of native seedlings in floodplain habitats. To determine if sweetclover impacted recruitment, we conducted a removal experiment along two rivers in interior Alaska. When compared to areas where sweetclover was removed, areas with sweetclover had approximately 50% greater mortality of native seedlings, 25% less recruiting species, and a significant reduction in the quantity of light available to seedlings on floodplain surfaces. To determine if sweetclover shading was a mechanism that limited seedling recruitment, we grew eight common early-successional floodplain plant species in a greenhouse under a range of lighting conditions that were representative of shading under sweetclover. We observed that species restricted to the earliest seral stages of floodplain succession experienced greater reductions in biomass than species that persist into later stages of floodplain succession. Shading seedlings in a greenhouse did not lead to mortality during the growing season. However, when seedlings were over-wintered, we observed that greater shading during the growing season can result in higher seedling mortality. Our study indicates sweetclover invasions have created a novel shade environment in early seral floodplain plant communities, which has the potential to alter community composition. To preserve biodiversity and structure of plant communities, sweetclover should be actively managed to prevent its spread onto additional glacial rivers in Alaska.  相似文献   

12.
Restoration of tallgrass prairie on former agricultural land is often impeded by failure to establish a diverse native species assemblage and by difficulties with nonprairie, exotic species. High levels of available soil nitrogen (N) on such sites may favor fast‐growing exotics at the expense of more slowly growing prairie species characteristic of low‐N soils. We tested whether reducing N availability through soil carbon (C) amendments could be a useful tool in facilitating successful tallgrass prairie restoration. We added 6 kg/m2 hardwood sawdust to experimental plots on an abandoned agricultural field in the Sandusky Plains of central Ohio, United States, increasing soil C by 67% in the upper 15 cm. This C amendment caused a 94% reduction in annual net N mineralization and a 27% increase in soil moisture but had no effect on total N or pH. Overall, plant mass after one growing season was reduced by 64% on amended compared with unamended soil, but this effect was less for prairie forbs (?34%) than for prairie grasses (?67%) or exotics (?62%). After the second growing season, only exotics responded significantly to the soil C amendment, with a 40% reduction in mass. The N concentration of green‐leaf tissue and of senescent leaf litter was also reduced by the soil C treatment in most cases. We conclude that soil C amendment imparts several immediate benefits for tallgrass prairie restoration––notably reduced N availability, slower plant growth, and lower competition from exotic species.  相似文献   

13.
Aims In this study, we examined the effects of Solidago altissima (hereafter Solidago) and two species in the genus Verbesina, Verbesina virginica and Verbesina occidentalis (hereafter Verbesina), on the structure of an old-field plant community and establishment by an invasive plant species, Lespedeza cuneata (hereafter Lespedeza).Methods We removed Solidago, Verbesina and both Solidago and Verbesina from 4-m 2 plots in an intact old-field community during two growing seasons. We then quantified the effects of these removals on richness, evenness, diversity and composition of the subdominant plant community. We also measured the total aboveground biomass and the aboveground biomass of the subdominant community. To assess how these removals affected establishment by Lespedeza, we planted 20 seeds in each plot and tracked seedling emergence and survival for one growing season.Important findings Subdominant community evenness and Shannon diversity were higher in plots from which Solidago and Verbesina were removed relative to control plots. However, there were no effects of dominant species removal on species richness or composition of the subdominant community. Total aboveground biomass was not affected by dominant species removal, suggesting that the community of subdominant species exhibited compensation. In fact, subdominant community biomass was greater when Solidago, but not Verbesina, was removed. Light availability was also greater in plots where Solidago was removed relative to control plots throughout the growing season. In addition, removal of dominant species, in particular Solidago, indirectly reduced the emergence, but not survival, of Lespedeza seedlings by directly promoting subdominant community biomass. Taken together, our results suggest that dominant old-field plant species affect subdominant community structure and indirectly promote establishment by Lespedeza .  相似文献   

14.
We evaluated the temporal and spatial patterns of abundance and the amount of damage caused by gall‐inducing insects (GII) in deciduous and riparian habitats in a seasonal tropical dry forest in Mexico. Plants occurring in these habitats differ in their phenology and moisture availability. Deciduous habitats are seasonal and xeric, while riparian habitats are aseasonal and mesic. We found 37 GII species and each one was associated with a specific plant species. In total, 19 species (51.3%) were present in deciduous habitats, 13 species (35.2%) in riparian habitats, and only 5 species (13.5%) occurred in both. Abundance and leaf damage by GII were greater in deciduous than in riparian habitats during the wet season. For each GII species that occurred in both habitats, host plant species supported greater abundance and leaf damage by GII in deciduous habitats during the wet season. These results indicate a greater association of GII species with host plants in deciduous than in riparian habitats during the wet season. In riparian habitats, 11 plant species (61.1%) had greater density of GII in the dry than in the wet season. Similarly, leaf damage by GII was significantly greater in the dry than in the wet season in riparian habitats for 12 plant species (66.7%). Dry forest plants of riparian habitats presented two peaks of leaf‐flushing: GII colonized leaves produced in the first peak at the beginning of the wet season, and accumulated or recolonized leaves in the second peak at the beginning of the dry season. The levels of leaf damage by GII detected in this study in the rainy season were considerably higher than those obtained for folivorous insects in other neotropical forests, suggesting that this GII guild might have an important impact on their host plant species in this tropical community.  相似文献   

15.
In riparian zones along the banks of streams and rivers, flooding often causes large changes in environmental conditions immediately downstream of confluences. In turn, spatial heterogeneity in flooding along rivers and streams likely affects local species diversity. Furthermore, flooding during the plant growing season can strongly affect plant survival. In this study, we hypothesized that confluences have impacts on plant species diversity, and that these impacts are larger during the plant growing season. To test this hypothesis, we measured plant species diversity and the extent of natural bare ground at 11 river confluences during two different seasons (summer and spring) within the Mukogawa River basin system, Japan. Species diversity was highest at down-confluence areas in the summer. We linked the pattern of species diversity to that of bare ground creation by floods around the confluences and to the seasonality of annual plant recruitment. The extent of bare ground was significantly greater at down-confluence areas than at up-confluence areas. The recruitment of annual species was higher in the summer than in the spring and included rapid occupancy of bare ground in the summer. We suggest that within river systems, spatial and seasonal differences in patterns of flooding function together to regulate plant species diversity.  相似文献   

16.
1. Interactions between two trophic levels can be very intimate, often making species dependent on each other, something that increases with specialisation. Some specialised multivoltine herbivores may depend on multiple plant species for their survival over the course of a growing season, especially if their food plants are short‐lived and grow at different times. Later generations may exploit different plant species from those exploited by previous generations. 2. Multivoltine parasitoids as well as their natural enemies must also find their hosts on different food plants in different habitats across the season. Secondary hyperparasitoid communities have been studied on cocoons of the primary parasitoid, Cotesia glomerata (Hymenoptera: Braconidae), on black mustard (Brassica nigra) – a major food plant of its host, the large cabbage white (Pieris brassicae) – which grows in mid‐summer. 3. Here, hyperparasitoid communities on C. glomerata pupal clusters were studied on an early‐season host, garlic mustard, Alliaria petiolata, over ‘time’ (one season, April–July) in six closely located ‘populations’ (c. 2 km apart), and within two different ‘areas’ at greater separation (c. 100 km apart). At the plant level, spatial effects of pupal ‘location’ (canopy or bottom) on the plant were tested. 4. Although large‐scale separation (area) did not influence hyperparasitism, sampling time and small‐scale separation (population) affected hyperparasitism levels and composition of hyperparasitoid communities. Location on the plant strongly increased proportions of winged species in the canopy and proportions of wingless species in bottom‐located pupae. 5. These results show that hyperparasitism varies considerably at the local level, but that differences in hyperparasitoid communities do not increase with spatial distance.  相似文献   

17.
Heterogeneity–diversity relationship (HDR) is commonly shown to be positive in accordance with classic niche processes. However, recent soil‐based studies have often found neutral and even negative HDRs. Some of the suggested reasons for this discrepancy include the lack of resemblance between manipulated substrate and natural settings, the treated areas not being large enough to contain species' root span, and finally limited‐sized plots may not sustain focal species’ populations over time. Vegetated green roofs are a growing phenomenon in many cities that could be an ideal testing ground for this problem. Recent studies have focused on the ability of these roofs to sustain stable and diverse plant communities and substrate heterogeneity that would increase niches on the roof has been proposed as a method to attain this goal. We constructed an experimental design using green roof experimental modules (4 m2) where we manipulated mineral and organic substrate component heterogeneity in different subplots (0.25 m2) within the experimental module while maintaining the total sum of mineral and organic components. A local annual plant community was seeded in the modules and monitored over three growing seasons. We found that plant diversity and biomass were not affected by experimentally created substrate heterogeneity. In addition, we found that different treatments, as well as specific subplot substrates, had an effect on plant community assemblages during the first year but not during the second and third years. Substrate heterogeneity levels were mostly unchanged over time. The inability to retain plant community composition over the years despite the maintenance of substrate differences supports the hypothesis that maintenance of diversity is constrained at these spatial scales by unfavorable dispersal and increased stochastic events as opposed to predictions of classic niche processes.  相似文献   

18.
Global climate change is predicted to alter growing season rainfall patterns, potentially reducing total amounts of growing season precipitation and redistributing rainfall into fewer but larger individual events. Such changes may affect numerous soil, plant, and ecosystem properties in grasslands and ultimately impact their productivity and biological diversity. Rainout shelters are useful tools for experimental manipulations of rainfall patterns, and permanent fixed-location shelters were established in 1997 to conduct the Rainfall Manipulation Plot study in a mesic tallgrass prairie ecosystem in northeastern Kansas. Twelve 9 x 14–m fixed-location rainfall manipulation shelters were constructed to impose factorial combinations of 30% reduced rainfall quantity and 50% greater interrainfall dry periods on 6 x 6–m plots, to examine how altered rainfall regimes may affect plant species composition, nutrient cycling, and above- and belowground plant growth dynamics. The shelters provided complete control of growing season rainfall patterns, whereas effects on photosynthetic photon flux density, nighttime net radiation, and soil temperature generally were comparable to other similar shelter designs. Soil and plant responses to the first growing season of rainfall manipulations (1998) suggested that the interval between rainfall events may be a primary driver in grassland ecosystem responses to altered rainfall patterns. Aboveground net primary productivity, soil CO2 flux, and flowering duration were reduced by the increased interrainfall intervals and were mostly unaffected by reduced rainfall quantity. The timing of rainfall events and resulting temporal patterns of soil moisture relative to critical times for microbial activity, biomass accumulation, plant life histories, and other ecological properties may regulate longer-term responses to altered rainfall patterns.  相似文献   

19.
Semiarid areas in the US have realized extensive and persistent exotic plant invasions. Exotics may succeed in arid regions by extracting soil water at different times or from different depths than native plants, but little data is available to test this hypothesis. Using estimates of root mass, gravimetric soil water, soil-water potential, and stable isotope ratios in soil and plant tissues, we determined water-use patterns of exotic and native plant species in exotic- and native-dominated communities in Washington State, USA. Exotic and native communities both extracted 12 ± 2 cm of water from the top 120 cm of soil during the growing season. Exotic communities, however, shifted the timing of water use by extracting surface (0–15 cm) soil water early in the growing season (i.e., April to May) before native plants were active, and by extracting deep (0–120 cm) soil water late in the growing season (i.e., June to July) after natives had undergone seasonal senescence. We found that δ 18O values of water in exotic annuals (e.g., −11.8 ± 0.4 ‰ for Bromus tectorum L.) were similar to δ 18O values of surface soil water (e.g., −13.3 ± 1.4 ‰ at −15 cm) suggesting that transpiration by these species explained early season, surface water use in exotic communities. We also found that δ 18O values of water in taprooted exotics (e.g., −17.4 ± 0.3 ‰ for Centaurea diffusa Lam.) were similar to δ 18O values of deep soil water (e.g., −18.4 ± 0.1 ‰ at −120 cm) suggesting that transpiration by these species explained late season, deep water use. The combination of early-season, shallow water-use by exotic winter-actives and late-season, deep water-use by taprooted perennials potentially explains how exotic communities resist establishment of native species that largely extracted soil water only in the middle of the growing season (i.e., May to June). Early season irrigation or the planting of natives with established root systems may allow native plant restoration.  相似文献   

20.
Expression of crassulacean acid metabolism (CAM) is characterized by extreme variability within and between taxa and its sensitivity to environmental variation. In this study, we determined seasonal fluctuations in CAM photosynthesis with measurements of nocturnal tissue acidification and carbon isotopic composition (δ13C) of bulk tissue and extracted sugars in three plant communities along a precipitation gradient (500, 700, and 1,000 mm year−1) on the Yucatan Peninsula. We also related the degree of CAM to light habitat and relative abundance of species in the three sites. For all species, the greatest tissue acid accumulation occurred during the rainy season. In the 500 mm site, tissue acidification was greater for the species growing at 30% of daily total photon flux density (PFD) than species growing at 80% PFD. Whereas in the two wetter sites, the species growing at 80% total PFD had greater tissue acidification. All species had values of bulk tissue δ13C less negative than −20‰, indicating strong CAM activity. The bulk tissue δ13C values in plants from the 500 mm site were 2‰ less negative than in plants from the wetter sites, and the only species growing in the three communities, Acanthocereus tetragonus (Cactaceae), showed a significant negative relationship between both bulk tissue and sugar δ13C values and annual rainfall, consistent with greater CO2 assimilation through the CAM pathway with decreasing water availability. Overall, variation in the use of CAM photosynthesis was related to water and light availability and CAM appeared to be more ecologically important in the tropical dry forests than in the coastal dune.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号