首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Industrial wastewater treatment comprises several processes to fulfill the discharge permits or to enable the reuse of wastewater. For tannery wastewater, constructed wetlands (CWs) may be an interesting treatment option. Two-stage series of horizontal subsurface flow CWs with Phragmites australis (UP series) and Typha latifolia (UT series) provided high removal of organics from tannery wastewater, up to 88% of biochemical oxygen demand (BOD5) (from an inlet of 420 to 1000 mg L−1) and 92% of chemical oxygen demand (COD) (from an inlet of 808 to 2449 mg L−1), and of other contaminants, such as nitrogen, operating at hydraulic retention times of 2, 5 and 7 days. No significant (P < 0.05) differences in performance were found between both the series. Overall mass removals of up to 1294 kg COD ha−1 d−1 and 529 kg BOD5 ha−1 d−1 were achieved for a loading ranging from 242 to 1925 kg COD ha−1 d−1 and from 126 to 900 kg BOD5 ha−1 d−1. Plants were resilient to the conditions imposed, however P. australis exceeded T. latifolia in terms of propagation.  相似文献   

2.
Hybrid constructed wetland systems have recently been used to treat wastewaters where high demand for removal of ammonia is required. However, these systems have not been used too often for small on-site treatment systems. This is because in many countries ammonia is not limited in the discharge from small systems. Hybrid systems have a great potential to reduce both ammonia and nitrate concentrations at the same time. In our study we employed a three-stage constructed wetland system consisting of saturated vertical-flow (VF) bed (2.5 m2, planted with Phragmites australis), free-drained VF bed (1.5 m2, planted with P. australis) and horizontal-flow (HF) bed (6 m2, planted with Phalaris arundinacea) in series. All wetlands were originally filled with crushed rock (4-8 mm). However, nitrification was achieved only after the crushed rock was replaced with sand (0-4 mm) in the free-drain wetland. Also, original size of crushed rock proved to be too vulnerable to clogging and therefore, in the first wetlands the upper 40 cm was replaced by coarser fraction of crushed rock (16-32 mm) before the second year of operation started. The system was fed with mechanically pretreated municipal wastewater and the total daily flow was divided into two batches 12 h apart. The evaluation of the results from the period 2007 to 2008 indicated that such a system has a great potential for oxidation of ammonia and reduction of nitrate. The ammonia was substantially reduced in the free-drained VF bed and nitrate was effectively reduced in the final HF bed. The inflow mean NH4-N concentration of 29.9 mg/l was reduced to 6.5 mg/l with the average removal efficiency of 78.3%. At the same time the average nitrate-N concentration rose from 0.5 to only 2.7 mg/l at the outflow. Removal of BOD5 and COD amounted to 94.5% and 84.4%, respectively, with respective average outflow concentrations of 10 and 50 mg/l. Phosphorus was removed efficiently despite the fact that the system was not aimed at P removal and therefore no special media were used. Phosphorus removal amounted in 2008 to 65.4%, but the average outflow concentration of 1.8 mg/l is still high. The results of the present study indicate very efficient performance of the hybrid constructed wetlands, but optimal loading parameters still need to be adjusted. The capital cost of the experimental system is comparable to the conventional on-site treatment plant but the operations and maintenance costs are about one third of the conventional plant.  相似文献   

3.
This study assesses the growth and morphological responses, nitrogen uptake and nutrient allocation in four aquatic macrophytes when supplied with different inorganic nitrogen treatments (1) NH4+, (2) NO3, or (3) both NH4+ and NO3. Two free-floating species (Salvinia cucullata Roxb. ex Bory and Ipomoea aquatica Forssk.) and two emergent species (Cyperus involucratus Rottb. and Vetiveria zizanioides (L.) Nash ex Small) were grown with these N treatments at equimolar concentrations (500 μM). Overall, the plants responded well to NH4+. Growth as RGR was highest in S. cucullata (0.12 ± 0.003 d−1) followed by I. aquatica (0.035 ± 0.002 d−1), C. involucratus (0.03 ± 0.002 d−1) and V. zizanioides (0.02 ± 0.003 d−1). The NH4+ uptake rate was significantly higher than the NO3 uptake rate. The free-floating species had higher nitrogen uptake rates than the emergent species. The N-uptake rate differed between plant species and seemed to be correlated to growth rate. All species had a high NO3 uptake rate when supplied with only NO3. It seems that the NO3 transporters in the plasma membrane of the root cells and nitrate reductase activity were induced by external NO3. Tissue mineral contents varied with species and tissue, but differences between treatments were generally small. We conclude, that the free-floating S. cucullata and I. aquatica are good candidate species for use in constructed wetland systems to remove N from polluted water. The rooted emergent plants can be used in subsurface flow constructed wetland systems as they grow well on any form of nitrogen and as they can develop a deep and dense root system.  相似文献   

4.
Rate and equilibrium constants at 25 °C, pH ∼ 1, and ionic strength 0.10 for hydrolysis of the two non-equivalent chlorides of dichloro[S-methyl-l-cysteine(N,S)]platinum(II) isomers, denoted [PtCl2(SmecysH)], and the resultant chloro-aqua species have been determined by NMR, potentiometric, and spectrophotometric methods. Though hydrolysis constants, Kh, for the two chlorides are similar (pKh = 4-5), the rate of hydrolysis of the chloride trans to coordinated S, kh = 3.4 × 10−3 s−1, is 2-3 orders of magnitude faster than the kh for the other chloride, 2.3 × 10−6 s−1, and for the cancer drug cisplatin, cis-[PtCl2(NH3)2], 5.2 × 10−5 s−1. Relative rates of hydrolysis determined under three different experimental conditions (pH ∼ 1 in 0.10 M HNO3, high pH in 0.10 M NaOH, and at low pH with Ag+ assistance) are consistent: the Cl trans to S is 100-1000 times more labile than the Cl cis to S. Potentiometric and NMR methods were also used to estimate pKa values of all aqua species, which are comparable to values reported for corresponding aqua species derived from cisplatin.  相似文献   

5.
An experiment was conducted from May to November in Lake Hampen, Denmark, to study the effect of higher CO2 concentration on the biomass of filamentous algae. Three enclosures (1.5 m diameter) were enriched with free CO2 to ∼10 times atmospheric equilibrium (∼170 μM) and three enclosures were kept at atmospheric equilibrium (∼17 μM). The isoetid Littorella uniflora dominated the vegetation in the enclosures. Low concentrations of nitrate and phosphate in the water were observed, especially in the summer months. During the summer, a high biomass of filamentous algae (dominated by Zygnema sp.) developed in both types of enclosures (18–58 g dry wt. m−2 in July and August), but the biomass of algae was significantly higher (1.9–38 times) in the CO2 enriched enclosures than in enclosures with low CO2 concentration. L. uniflora biomass, especially leaf biomass, also showed a significant positive response to increased CO2 concentration (75.0 ± 10.4 and 133.3 ± 42.5 g dry wt. m−2 at low and high CO2 concentrations, respectively) even though the massive filamentous algal growth decreased the light intensity. Both filamentous algae (in August) and L. uniflora showed lower tissue concentrations of N and P at high CO2 concentration.  相似文献   

6.
The aim of this study was to explore the potential for reducing soluble N load in fishpond wastewater using naturally occurring denitrifying bacteria. Twenty-seven isolates were selected from in wastewater (liquid/solid) of catfish-ponds located along the Tien river, in the Mekong Delta, Vietnam in SW-LB medium (artificial seawater Luria-Britani medium) supplemented with 10 mM NH4 and NO3 and twenty-five isolates were identified as Pseudomonas stutzeri based on similarity of PCR-16S rRNA using universal primers and specific primers. Four isolates were effective in lowering soluble N (NH4, NO2 and NO3) levels in fishpond water from 10 mg/L to negligible amounts after four days. Further experiments are underway to determine the fate of N lost from solution and the relative activity of ammonia oxidation, and nitrite and nitrate reduction by P. stutzeri isolates.  相似文献   

7.
Flooding has been described as one of the primary factors affecting arbuscular mycorrhizal (AM) colonization in wetlands. We investigated the effect of water-level fluctuations on AM colonization of Typha latifolia L. using an experimental wetland in southeastern Idaho, USA that received intermittent flows. Unlike previous research that has examined the effect of flooding on AM fungi using topographic gradients, we replicated flooding in time by sampling across multiple flooding events. AM colonization of T. latifolia occurred during flooded and unflooded periods, but was markedly reduced at drawdown. Both hyphal (R = 0.74, P = 0.015) and arbuscular (R = 0.67, P = 0.033) colonization were positively correlated with the length of the unflooded period. Taken together, the length of the unflooded period and soil moisture explained 83% of the variation in mean hyphal colonization (R2 = 0.83, P = 0.001). Overall, the results of this investigation show that drawdown represents a period of reduced AM colonization in T. latifolia.  相似文献   

8.
Constructed wetlands (CWs) are considered to be important sources of nitrous oxide (N2O). In order to investigate the effect of influent COD/N ratio on N2O emission and control excess emission from nitrogen removal, free water surface microcosm wetlands were used and fed with different influent. In addition, the transformation of nitrogen was examined for better understanding of the mechanism of N2O production under different operating COD/N ratios. It was found that N2O emission and the performance of microcosm wetlands were significantly affected by COD/N ratio of wastewater influent. Strong relationships exist between N2O production rate and nitrite (r = 0.421, p < 0.01). During denitrification process, DO concentration crucially influences N2O production rate. An optimal influent COD/N ratio was obtained by adjusting external carbon sources for most effective N2O emission control and best performance of the CWs in nitrogen removal from wastewater. It is concluded that under the operating condition of COD/N ratio = 5, total N2O emission is minimum and the microcosm wetland is most effective in wastewater nitrogen removal.  相似文献   

9.
Although many emergent wetland plants may readily tolerate rapid changes in flooding and drying under freshwater conditions, their tolerance to dynamic water regimes may be compromised by salinity. Melaleuca-dominated woodlands occur naturally in Australia, south-east Asia and New Caledonia. Coastal wetlands dominated by Swamp paperbark (Melaleuca ericifolia) (Myrtaceae), native to south-east Australia, are commonly degraded as a consequence of altered water regime and salinity. This study simulates the release of M. ericifolia seeds from the aerial canopy under a range of water regime and salinity scenarios to determine conditions limiting sexual recruitment. Plant growth and survival were examined following seed release under two static water regimes (moist and flooded sediment) and two dynamic water regimes (simulated drawdown—“flooded-moist” and simulated re-flooding—“moist-flooded”). All water regimes, excluding the continuously flooded regime, were examined at three salinities: 0.1 dS m−1 (fresh), 8 dS m−1 and 16 dS m−1, over a 50-day period commencing 44 days after the seeds were sown. The flooded treatment was examined at 0.1 dS m−1 only, to confirm that flooding prohibits establishment of M. ericifolia. Seed and seedlings were positively buoyant and establishment was limited to moist soil. Flotation of seedlings in the flooded-moist treatment, however, did not inhibit subsequent establishment upon moist soil, even at the highest salinity of 16 dS m−1. Growth, but not survival, was reduced by salinities of 8 dS m−1 and 16 dS m−1 in the moist treatment. Flotation of seedlings in saline water in the flooded-moist treatment did not reduce growth or survival compared with fresh water. Survival of seedlings in the moist-flooded treatment was lower in the freshwater and 16 dS m−1 treatment compared with the moist treatment, but not at 8 dS m−1. These findings suggest that water regime influences establishment of young M. ericifolia plants more strongly than does salinity, at least up to ∼1/3 seawater and in the short term (<2 months). Seedlings are likely to establish during a drawdown where the soil is exposed at salinities of ≤16 dS m−1. In contrast, premature re-flooding of seedlings, even with fresh water, will compromise survival.  相似文献   

10.
The ammonium (NH4+) and nitrate (NO3) uptake responses of tetrasporophyte cultures from a Portuguese population of Gracilaria vermiculophylla were studied. Thalli were incubated at 5 nitrogen (N) levels, including single (50 μM of NH4+ or NO3) and combined addition of each of the N sources. For the combined additions, the experimental conditions attempted to simulate 2 environments with high N availability (450 μM NO3 + 150 μM NH4+; 250 μM NO3 + 50 μM NH4+) and the mean N concentrations occurring at the estuarine environment of this population (30 μM NO3 + 5 μM NH4+). The uptake kinetics of NH4+ and NO3 were determined during a 4 h time-course experiment with N deprived algae. The experiment was continued up to 48 h, with media exchanges every 4 h. The uptake rates and efficiency of the two N sources were calculated for each time interval. For the first 4 h, G. vermiculophylla exhibited non-saturated uptake for both N sources even for the highest concentrations used. The uptake rates and efficiency calculated for that period (V0-4 h), respectively, increased and decreased with increasing substrate concentration. NO3 uptake rates were superior, ranging from 1.06 ± 0.1 to 9.65 ± 1.2 μM g(dw)−1 h−1, with efficiencies of 19% to 53%. NH4+ uptake rates were lower (0.32 ± 0.0 to 5.75 ± 0.08 μM g(dw)−1 h−1) but G. vermiculophylla removed 63% of the initial 150 μM and 100% at all other conditions. Uptake performance of both N sources decreased throughout the duration of the experiment and with N tissue accumulation. Both N sources were taken up during dark periods though with better results for NH4+. Gracilaria vermiculophylla was unable to take up NO3 at the highest concentration but compensated with a constant 27% NH4+ uptake through light and dark periods. N tissue accumulation was maximal at the highest N concentration (3.9 ± 0.25% dw) and superior under NH4+ (3.57 ± 0.2% dw) vs NO3 (3.06 ± 0.1% dw) enrichment. The successful proliferation of G. vermiculophylla in estuarine environments and its potential utilization as the biofilter component of Integrated Multi-Trophic Aquaculture (IMTA) are discussed.  相似文献   

11.
Hexavalent chromium (Cr6 +) is a common pollutant transient metal with high toxicity in the environment. The toxicological effects partly result from oxidative damage due to the production of excessive reactive oxygen species (ROS) in the reductive process of Cr6 +. To explore the influence of ROS induced directly by Cr6 + on the oxidative stress generation and antioxidant system, the full length cDNAs of antioxidant-related genes cat, gpx1 and Cu/Zn-sod were successfully acquired from pengze crucian carp first and analyzed. Furthermore, the mRNA expression of the antioxidant genes encompassing catalase (cat), copper/zinc superoxide dismutase (Cu/Zn-sod) and glutathione peroxidase (gpx1), antioxidant enzyme activities of CAT, SOD, and GPx and total protein content were further studied in the gill, intestine and liver of pengze crucian carp (Carassius auratus var. Pengze) juveniles upon acute exposure to Cr6 + at concentrations of 0.1, 1.0, 10 and 100 mg/L for 4 days. Differential significant changes of the antioxidant enzymes and gene expression were observed in different tissues. The findings contribute to better understanding the antioxidant mechanisms induced by Cr6 + and selecting the organic-specific sensitive biomarkers to monitor the safety of the aquatic ecosystem.  相似文献   

12.
The aim of this study was to compare the growth, community structure, and nutrient removal rates between monoculture and mixed wetlands, based on the hypothesis that it depends on the plant species used in the wetlands as to whether monoculture or mixed wetland is superior in plant growth and nutrient removal. Pilot-scale monoculture and mixed constructed wetlands were studied over 4 years. The monoculture wetland had a community height similar to the mixed wetland during the early years but a significantly lower height than the mixed wetland (P < 0.05) during the last year. The mixed wetland also displayed a higher plant density than the monoculture wetland (P < 0.05). The leaf area index in the monoculture wetland was significantly higher in the first year (P < 0.05) and significantly lower in the later years (P < 0.05) than that in the mixed wetland. The monoculture wetland had a similar vertical distribution of below-ground biomass over 4 years, while the mixed wetland showed a significant change in vertical distribution of below-ground biomass in the last 2 years. The monoculture wetland had a larger (P < 0.05) above-ground biomass and a similar leaf biomass in the first year, and a smaller above-ground biomass (P < 0.05) and a smaller leaf biomass (P < 0.05) than the mixed wetland during the latter 2 years. The amount of standing dead mass was smaller in the mixed wetland than in the monoculture wetland (P < 0.05). The mixed wetland exhibited a significantly lower NH4-N removal rate in the first year (P < 0.05), and significantly higher NH4-N removal rate in the last year, when compared to the monoculture wetland (P < 0.05). The study indicated that species competition and stubble growth resulted in significant differences between monoculture and mixed constructed wetlands in plant growth, community structure, and nutrient removal rates.  相似文献   

13.
Zhou X  Chen C  Wang A  Liu LH  Ho KL  Ren N  Lee DJ 《Bioresource technology》2011,102(8):5244-5247
Rapid formation of denitrifying sulfide removal granules is of practical interest to start up an expanded granular sludge bed reactor for wastewater treatment. This study demonstrates that methanogenic granules can be easily acclimated into DSR granules in one day, removing all 1.30 kg m−3 d−1 sulfide and converting >90% of 0.56 kg-N m−3d−1 nitrate into di-nitrogen gas. Under high loadings, reactor performance, however, declined. Under high loading rates, sulfide first inhibited the heterotrophic denitrifier (Caldithrix sp.), thereby accumulating nitrite in the system; the autotrophic denitrifier (Pseudomonas sp. C23) was then inhibited by accumulated nitrite, leading to breakdown of the entire DSR process.  相似文献   

14.
Most fish populations are declining worldwide and their management would benefit from a better estimation of recruitment. In glass eels, field studies suggest that estuarine migratory glass eels are sensitive enough to light to change their vertical location according to factors such as water turbidity and/or moon brightness. The response of glass eel (Anguilla anguilla L.) to light was tested in the laboratory using boxes where fish could choose between a lit and an unlit side. Responses were quantified as the proportion of glass eels remaining in the unlit chamber. Decreasing light levels were used and tested on different “age” glass eels (“age” in days since capture). In addition, measures of light at different depths of the water column were carried out in the Adour estuary (43°30′ N, 1°30′ W). The glass eel light avoidance level was lower in non-pigmented glass eel (less than 10 − 10 W cm − 2), than in pigmented ones (10 −9-10 − 8 W cm − 2). These results and field data on the measurement of light energy in the water column of Adour estuary are compared with previously published data on the estuarine migration of glass eel.  相似文献   

15.
Productivity measurements from carbon uptake have been suggested as good indicators of the physiological health of seagrasses. As seagrasses acquire carbon from the surrounding water, the rate of uptake often provide a good measure of the efficiency at which seagrasses meet their resource demands for growth. This rate is often used to assess the photosynthetic efficiency of the plants, a proxy for the physiological status of seagrass. This has special relevance to the Adelaide region as over 5000 ha of seagrasses have been lost from Adelaide coastal waters over the last 70 years, with much of this loss attributed to nutrient inputs from wastewater, industrial and stormwater discharges. This study used an in-situ inorganic carbon isotope-labelling and spike approach to obtain ecologically relevant estimates of seasonal variability in carbon uptake and its allocation in two species of temperate seagrass common to this coast (Amphibolis antarctica and Posidonia angustifolia). Uptake of carbon by the seagrass complex (leaves, roots, phytoplankton and epiphytes) was affected by both season and species. Carbon uptake rates of phytoplankton were generally higher than other components of the system. Uptake rates ranged from 0.01 mg C g− 1 DW h− 1 (summer) to 0.61 mg C g− 1 DW h− 1 (spring) in Posidonia and 0.02 mg C g− 1 DW h− 1 (summer) to 0.93 mg C g− 1 DW h− 1 (winter) in Amphibolis. Carbon uptake by the Amphibolis complex was higher than in the Posidonia complex. The Amphibolis complex had higher uptake rates in summer whereas the Posidonia complex was higher in spring. Fine sediments probably from a nearby dredging operation, are likely to have resulted in lower carbon uptake and a reduction in the above-ground and below-ground biomass in summer.  相似文献   

16.
Salt marshes near urban, industrial and mining areas are often affected both by heavy metals and by eutrophic water. The aim of this study was to assess and evaluate the main processes involved in the decrease of nitrate concentration in pore water of mine wastes flooded with eutrophic water, considering the presence or absence of plant rhizhosphere. Basic (pH ∼ 7.8) carbonated loam mine wastes and free-carbonated acidic (pH ∼ 6.2) sandy-loam mine wastes were collected from polluted coastal salt marshes of SE Spain which regularly receive nutrient-enriched water. The wastes were put in pots and flooded for 15 weeks with eutrophic water (dissolved organic carbon ∼26 mg L−1, PO43− ∼23 mg L−1, NO3 ∼180 mg L−1). Three treatments were assayed for each type of waste: pots with Sarcocornia fruticosa, pots with Phragmites australis and unvegetated pots. Soluble organic carbon, nitrate, soluble Cd, Pb and Zn, pH and Eh were monitored. But the 2nd day of flooding, nitrate concentrations had decreased between 70% and 90% (equivalent to 1.01-1.12 g N-NO3 m−2 day−1) with respect to the content in the water used for flooding, except in unvegetated pots with acidic wastes. Denitrification was the main mechanism associated with the removal of nitrate. The role of vegetation in improving the rhizospheric environment was relevant in the acidic wastes because higher sand content, lower pH and higher soluble metal concentrations might strongly hinder microbial activity Hence, revegetation of salt marshes polluted by acidic sandy mining wastes might improve the capacity of this type of environment to act as a green filter against excessive nitrate contents flowing through them.  相似文献   

17.
《Ecological Engineering》2005,24(3):185-198
In 2001, to foster the practical development of constructed wetlands (CWs) used for domestic wastewater treatment in Turkey, vertical subsurface flow constructed wetlands (30 m2 of each) were implemented on the campus of the METU, Ankara, Turkey. The main objective of the research was to quantify the effect of different filter media on the treatment performance of vertical flow wetlands in the prevailing climate of Ankara. Thus, a gravel-filled wetland and a blast furnace granulated iron slag-filled wetland were operated identically with primarily treated domestic wastewater (3 m3 d−1) at a hydraulic loading rate of 0.100 m d−1, intermittently. Both of the wetland cells were planted with Phragmites australis. According to the first year results, average removal efficiencies for the slag and gravel wetland cells were as follows: total suspended solids (TSS) (63% and 59%), chemical oxygen demand (COD) (47% and 44%), NH4+–N (88% and 53%), total nitrogen (TN) (44% and 39%), PO43−-P (44% and 1%) and total phosphorus (TP) (45% and 4%). The treatment performances of the slag-filled wetland were better than that of the gravel-filled wetland in terms of removal of phosphorus and production of nitrate. Since this study was a pioneer for implementation of subsurface constructed wetlands in Turkey using local sources, it has proved that this eco-technology could also be used effectively for water quality enhancement in Turkey.  相似文献   

18.
Free amino acids (FAAs) play a key role in the physiology of marine teleosts (eggs, embryos, and larvae). However, the relationship between the egg FAAs content and the production of viable embryos and larvae (at different developmental stages) in batch spawner pelagophils has not yet comprehensively been investigated. Viable eggs of common dentex, Dentex dentex, were obtained from captive broodstocks. Egg wet weight (WW), dry weight (DW), and water content (%W) and viability parameters, or VPs (egg floating rate [FR], hatching rate [HR], and larval survival rate [SR] at days 0 to 5 posthatch) were determined for 45 egg batches. The egg batches were classified according to their HR magnitude. Twelve egg batches with the same WW, DW, and %W were taken from the same broodstock and at the same developmental stage to determine the qualitative and quantitative composition of FAAs. The total FAA (TFAA) content, glutamic acid (Glu), asparagine (Asn), glutamine (Gln), and arginine (Arg) were correlated with VPs. The Glu was significantly correlated with HR and SR at 0 day posthatch (dph), the Asn with SR at 1 dph, and the Gln and Arg with FR and HR. Of the 361 ratios made based on the absolute concentrations of FAAs, 24 ratios were correlated with VPs (P < 0.005) through 42 simple regression models (R2 = 0.641 to 0.846). Of the 42 significant relationships found ∼10%, ∼28%, ∼12%, ∼30%, ∼8%, ∼4%, ∼2%, ∼2%, and ∼2% of the models show the relations of the egg FAAs ratios with FR, HR, SR at days 1 to 5 posthatch, and %W, respectively. A path coefficient in combination with a Pearson's correlation coefficient provided a series of statistical evidences to show the effects of the egg FAAs interrelations on the relationships found between quantitative composition of a FAA and a VP.  相似文献   

19.
There has been significant global growth in the use of constructed wetlands for wastewater treatment. The fundamental microbial processes involved in the biodegradation of organic wastewater pollutants determine the range of design and operational parameters relevant to individual constructed wetlands. In this study, the biodegradation and mineralization of ethanol by acclimated and non-acclimated microbial populations in pilot-scale constructed wetlands were compared. By increasing the pollutant concentration at incremental intervals (incremental priming), the biodegradative capacity of a sand-filled constructed wetland was significantly enhanced. At an influent COD concentration of 15,800 mg L−1, no volatile fatty acids were detected in the effluent of an incrementally primed system and the maximum effluent COD concentration was 180 mg L−1. In contrast, an identical, unprimed system, amended with a lower concentration of COD (7587 mg L−1), exhibited a maximum effluent COD concentration of 1400 mg L−1, with the anaerobic metabolites, butyrate and propionate accounting for up to 83% of the effluent COD. It was demonstrated that the use of incremental priming, together with a vertical subsurface flow mode of operation enhanced long-term function of constructed wetlands. Future research should focus on determining the concentration gradients and incremental intervals necessary for optimal microbial acclimation to a range of organic pollutants and/or wastewaters, in order to minimize start-up times without significantly impairing the benefits derived from incremental priming.  相似文献   

20.
Effluent organic nitrogen concentrations from seven constructed stormwater wetlands in North Carolina were examined to compare background organic nitrogen (ON) concentrations and the fraction of organic nitrogen relative to total nitrogen discharged. Seasonal influences on organic nitrogen concentrations were also examined. The median ON concentration from the stormwater wetlands was 0.78 mg l−1, and despite differences in wetland design and influent ON characteristics, outlet ON concentrations from all but one wetland were not significantly different. ON export from all stormwater wetlands was significantly less than untreated runoff entering the wetlands (p = 0.002). In addition, median organic:total nitrogen (ON:TN) ratios from stormwater wetlands (0.75) were significantly greater than from untreated urban runoff (0.66), comparing more closely to ON:TN ratios collected from a naturally occurring wetland and reported in the literature for natural landscapes. Seasonal differences in organic nitrogen concentrations were identified with significantly lower concentrations during the winter. Though stormwater wetlands will not (and perhaps should not be expected to) completely remove total nitrogen loads from runoff, these results suggest constructed wetlands can play a role in restoring the balance between organic and inorganic nitrogen forms closer to that of an undisturbed landscape. The presence of background organic nitrogen concentrations from stormwater wetlands similar to those from a naturally occurring wetland highlights the importance of choosing appropriate metrics (e.g., effluent concentrations) when assessing treatment performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号