首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Denitrification beds are a simple approach for removing nitrate (NO3) from a range of point sources prior to discharge into receiving waters. These beds are large containers filled with woodchips that act as an energy source for microorganisms to convert NO3 to nitrogen (N) gases (N2O, N2) through denitrification. This study investigated the biological mechanism of NO3 removal, its controlling factors and its adverse effects in a large denitrification bed (176 m × 5 m × 1.5 m) receiving effluent with a high NO3 concentration (>100 g N m−3) from a hydroponic glasshouse (Karaka, Auckland, New Zealand). Samples of woodchips and water were collected from 12 sites along the bed every two months for one year, along with measurements of gas fluxes from the bed surface. Denitrifying enzyme activity (DEA), factors limiting denitrification (availability of carbon, dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, pH, and concentrations of NO3, nitrite (NO2) and sulfide (S2−)), greenhouse gas (GHG) production - as nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) - and carbon (C) loss were determined. NO3-N concentration declined along the bed with total NO3-N removal rates of 10.1 kg N d−1 for the whole bed or 7.6 g N m−3 d−1. NO3-N removal rates increased with temperature (Q10 = 2.0). In laboratory incubations, denitrification was always limited by C availability rather than by NO3. DO levels were above 0.5 mg L−1 at the inlet but did not limit NO3-N removal. pH increased steadily from about 6 to 7 along the length of the bed. Dissolved inorganic carbon (C-CO2) increased in average about 27.8 mg L−1, whereas DOC decreased slightly by about 0.2 mg L−1 along the length of the bed. The bed surface emitted on average 78.58 μg m−2 min−1 N2O-N (reflecting 1% of the removed NO3-N), 0.238 μg m−2 min−1 CH4 and 12.6 mg m−2 min−1 CO2. Dissolved N2O-N increased along the length of the bed and the bed released on average 362 g dissolved N2O-N per day coupled with N2O emission at the surface about 4.3% of the removed NO3-N as N2O. Mechanisms to reduce the production of this GHG need to be investigated if denitrification beds are commonly used. Dissolved CH4 concentrations showed no trends along the length of the bed, ranging from 5.28 μg L−1 to 34.24 μg L−1. Sulfate (SO42−) concentrations declined along the length of the bed on three of six samplings; however, declines in SO42− did not appear to be due to SO42− reduction because S2− concentrations were generally undetectable. Ammonium (NH4+) (range: <0.0007 mg L−1 to 2.12 mg L−1) and NO2 concentrations (range: 0.0018 mg L−1 to 0.95 mg L−1) were always very low suggesting that anammox was an unlikely mechanism for NO3 removal in the bed. C longevity was calculated from surface emission rates of CO2 and release of dissolved carbon (DC) and suggested that there would be ample C available to support denitrification for up to 39 years.This study showed that denitrification beds can be an efficient tool for reducing high NO3 concentrations in effluents but did produce some GHGs. Over the course of a year NO3 removal rates were always limited by C and temperature and not by NO3 or DO concentration.  相似文献   

2.
To date, few studies are conducted to quantify the effects of reduced ammonium (NH4 +) and oxidized nitrate (NO3 ) on soil CH4 uptake and N2O emission in the subtropical forests. In this study, NH4Cl and NaNO3 fertilizers were applied at three rates: 0, 40 and 120 kg N ha−1 yr−1. Soil CH4 and N2O fluxes were determined twice a week using the static chamber technique and gas chromatography. Soil temperature and moisture were simultaneously measured. Soil dissolved N concentration in 0–20 cm depth was measured weekly to examine the regulation to soil CH4 and N2O fluxes. Our results showed that one year of N addition did not affect soil temperature, soil moisture, soil total dissolved N (TDN) and NH4 +-N concentrations, but high levels of applied NH4Cl and NaNO3 fertilizers significantly increased soil NO3 -N concentration by 124% and 157%, respectively. Nitrogen addition tended to inhibit soil CH4 uptake, but significantly promoted soil N2O emission by 403% to 762%. Furthermore, NH4 +-N fertilizer application had a stronger inhibition to soil CH4 uptake and a stronger promotion to soil N2O emission than NO3 -N application. Also, both soil CH4 and N2O fluxes were driven by soil temperature and moisture, but soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the subtropical plantation soil sensitively responses to atmospheric N deposition, and inorganic N rather than organic N is the regulator to soil CH4 uptake and N2O emission.  相似文献   

3.
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural runoff through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient runoff from plant nurseries and compares these to similar forest soils not exposed to nutrient runoff. Nursery runoff also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g−1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g−1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g−1 in soil slurries. The addition of PO4 (5 μg PO4-P g−1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forest soils.  相似文献   

4.
Reservoirs are intrinsically linked to the rivers that feed them, creating a river–reservoir continuum in which water and sediment inputs are a function of the surrounding watershed land use. We examined the spatial and temporal variability of sediment denitrification rates by sampling longitudinally along an agriculturally influenced river–reservoir continuum monthly for 13 months. Sediment denitrification rates ranged from 0 to 63 μg N2O g ash free dry mass of sediments (AFDM)−1 h−1 or 0–2.7 μg N2O g dry mass of sediments (DM)−1 h−1 at reservoir sites, vs. 0–12 μg N2O gAFDM−1 h−1 or 0–0.27 μg N2O gDM−1 h−1 at riverine sites. Temporally, highest denitrification activity traveled through the reservoir from upper reservoir sites to the dam, following the load of high nitrate (NO3-N) water associated with spring runoff. Annual mean sediment denitrification rates at different reservoir sites were consistently higher than at riverine sites, yet significant relationships among theses sites differed when denitrification rates were expressed per gDM vs. per gAFDM. There was a significant positive relationship between sediment denitrification rates and NO3-N concentration up to a threshold of 0.88 mg NO3 -N l−1, above which it appeared NO3-N was no longer limiting. Denitrification assays were amended seasonally with NO3-N and an organic carbon source (glucose) to determine nutrient limitation of sediment denitrification. While organic carbon never limited sediment denitrification, all sites were significantly limited by NO3-N during fall and winter when ambient NO 3-N was low.  相似文献   

5.
Nitrate (NO3) loss from agriculture to shallow groundwater and transferral to sensitive aquatic ecosystems is of global concern. Denitrifying bioreactor technology, where a solid carbon (C) reactive media intercepts contaminated groundwater, has been successfully used to convert NO3 to di-nitrogen (N2) gas. One of the challenges of groundwater remediation research is how to track denitrification potential spatially and temporally within reactive media and subsoil. First, using δ15N/δ18O isotopes, eight wells were divided into indicative transformational processes of ‘nitrification’ or ‘denitrification’ wells. Then, using N2/argon (Ar) ratios these wells were divided into ‘low denitrification potential’ or high denitrification potential’ categories. Secondly, using falling head tests, the saturated hydraulic conductivity (Ksat) in each well was estimated, creating two groups of ‘slow’ (0.06 m day−1) and ‘fast’ (0.13 m day−1) wells, respectively. Thirdly, two ‘low denitrification potential’ wells (one fast and one slow) with high NO3 concentration were amended with woodchip to enhance denitrification. Water samples were retrieved from all wells using a low flow syringe to avoid de-gassing and analysed for N2/Ar ratio using membrane inlet mass spectrometry. Results showed that there was good agreement between isotope and chemical (N2/Ar ratio and dissolved organic C (DOC)) and physio-chemical (dissolved oxygen, temperature, conductivity and pH) parameters. To explain the spatial and temporal distribution of NO3 and other parameters on site, the development of predictive models using the available datasets for this field site was examined for NO3, Cl, N2/Ar and DOC. Initial statistical analysis was directed towards the testing of the effect of woodchip amendment. The analysis was formulated as a repeated measures analysis of the factorial structure for treatment and time. Nitrate concentrations were related to Ksat and water level (p < 0.0001 and p = 0.02, respectively), but did not respond to woodchip addition (p = 0.09). This non-destructive technique allows elucidation of denitrification potential over time and could be used in denitrifying bioreactor technology to assess denitrification hotspots in reactive media, while developing a NO3 spatial and temporal predictive model for bioreactor site specific conditions.  相似文献   

6.
Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We investigated how a decade of experimental N addition (125 kg N ha?1 year?1) to a seasonal lowland forest affected depth distribution and contents of soil nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), as well as natural abundance isotopic signatures of N2O, nitrate (NO3 ?) and ammonium (NH4 +). In the control plots during dry season, we deduced limited N2O production by denitrification in the topsoil (0.05–0.40 m) as indicated by: ambient N2O concentrations and ambient 15N-N2O signatures, low water-filled pore space (35–60%), and similar 15N signatures of N2O and NO3 ?. In the subsoil (0.40–2.00 m), we detected evidence of N2O reduction to N2 during upward diffusion, indicating denitrification activity. During wet season, we found that N2O at 0.05–2.00 m was mainly produced by denitrification with substantial further reduction to N2, as indicated by: lighter 15N-N2O than 15N-NO3 ? throughout the profile, and increasing N2O concentrations with simultaneously decreasing 15N-N2O enrichment with depth. These interpretations were supported by an isotopomer map and by a positive correlation between 18O-N2O and 15N-N2O site preferences. Long-term N addition did not affect dry-season soil N2O-N contents, doubled wet-season soil N2O-N contents, did not affect 15N signatures of NO3 ?, and reduced wet-season 15N signatures of N2O compared to the control plots. These suggest that the increased NO3 ? concentrations have stimulated N2O production and decreased N2O-to-N2 reduction. Soil CO2-C contents did not differ between treatments, implying that N addition essentially did not influence soil C cycling. The pronounced seasonality in soil respiration was largely attributable to enhanced topsoil respiration as indicated by a wet-season increase in the topsoil CO2-C contents. The N-addition plots showed reduced dry-season soil CH4-C contents and threshold CH4 concentrations were reached at a shallower depth compared to the control plots, revealing an N-induced stimulation of methanotrophic activity. However, the net soil CH4 uptake rates remained similar between treatments possibly because diffusive CH4 supply from the atmosphere largely limited CH4 oxidation.  相似文献   

7.
Intensive agriculture leads to increased nitrogen fluxes (mostly as nitrate, NO3 ?) to aquatic ecosystems, which in turn creates ecological problems, including eutrophication and associated harmful algal blooms. These problems have focused scientific attention on understanding the controls on nitrate reduction processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Our objective was to determine the effects of nutrient-tolerant bioturbating invertebrates (tubificid oligochaetes) on nitrogen cycling processes, specifically coupled nitrification–denitrification, net denitrification, DNRA, and biogeochemical fluxes (O2, NO3 ?, NH4 +, CO2, N2O, and CH4) in freshwater sediments. A mesocosm experiment determined how tubificid density and increasing NO3 ? concentrations (using N15 isotope tracing) interact to affect N cycling processes. At the lowest NO3 ? concentration and in the absence of bioturbation, the relative importance of denitrification to DNRA was similar (i.e., 49.6 and 50.4 ± 8.1 %, respectively). Increasing NO3 ? concentrations in the control cores (without fauna) stimulated denitrification, but did not enhance DNRA, which significantly altered the relative importance of denitrification compared to DNRA (94.6 vs. 5.4 ± 0.9 %, respectively). The presence of tubificid oligochaetes enhanced O2, NO3 ?, NH4 + fluxes, greenhouse gas production, and N cycling processes. The relative importance of denitrification to DNRA shifted towards favoring denitrification with both the increase in NO3 ? concentrations and the increase of bioturbation activity. Our study highlights that understanding the interactions between nutrient-tolerant bioturbating species and nitrate contamination is important for determining the nitrogen removal capacity of eutrophic freshwater ecosystems.  相似文献   

8.
Intact sediment cores from rivers of the Bothnian Bay (Baltic Sea) were studied for denitrification based on benthic fluxes of molecular nitrogen (N2) and nitrous oxide (N2O) in a temperature controlled continuous water flow laboratory microcosm under 10, 30, 100, and 300 μM of 15N enriched nitrate (NO3 ?, ~98 at. %). Effluxes of both N2 and N2O from sediment to the overlying water increased with increasing NO3 ? load. Although the ratio of N2O to N2 increased with increasing NO3 ? load, it remained below 0.04, N2 always being the main product. At the NO3 ? concentrations most frequently found in the studied river water (10–100 μM), up to 8% of the NO3 ? was removed in denitrification, whereas with the highest concentration (300 μM), the removal by denitrification was less than 2%. However, overall up to 42% of the NO3 ? was removed by mechanisms other than denitrification. As the microbial activity was simultaneously enhanced by the NO3 ? load, shown as increased oxygen consumption and dissolved inorganic carbom efflux, it is likely that a majority of the NO3 ? was assimilated by microbes during their growth. The 15N content in ammonium (NH4 +) in the efflux was low, suggesting that reduction of NO3 ? to NH4 + was not the reason for the NO3 ? removal. This study provides the first published information on denitrification and N2O fluxes and their regulation by NO3 ? load in eutrophic high latitude rivers.  相似文献   

9.

Background and aims

The direct measurement of denitrification dynamics and its product fractions is important for parameterizing process-oriented model(s) for nitrogen cycling in various soils. The aims of this study are to a) directly measure the denitrification potential and the fractions of nitrogenous gases as products of the process in laboratory, b) investigate the effects of the nitrate (NO 3 ? ) concentration on emissions of denitrification gases, and c) test the hypothesis that denitrification can be a major pathway of nitrous oxide (N2O) and nitric oxide (NO) production in calcic cambisols under conditions of simultaneously sufficient supplies of carbon and nitrogen substrates and anaerobiosis as to be found to occur commonly in agricultural lands.

Methods

Using the helium atmosphere (with or without oxygen) gas-flow-soil-core technique in laboratory, we directly measured the denitrification potential of a silt clay calcic cambisol and the production of nitrogen gas (N2), N2O and NO during denitrification under the conditions of seven levels of NO 3 ? concentrations (ranging from 10 to 250 mg N kg?1 dry soil) and an almost constant initial dissolved organic carbon concentration (300 mg C kg?1 dry soil).

Results

Almost all the soil NO 3 ? was consumed during anaerobic incubation, with 80–88 % of the consumed NO 3 ? recovered by measuring nitrogenous gases. The results showed that the increases in initial NO 3 ? concentrations significantly enhanced the denitrification potential and the emissions of N2 and N2O as products of this process. Despite the wide range of initial NO 3 ? concentrations, the ratios of N2, N2O and NO products to denitrification potential showed much narrower ranges of 51–78 % for N2, 14–36 % for N2O and 5–22 % for NO.

Conclusions

These results well support the above hypothesis and provide some parameters for simulating effects of variable soil NO 3 ? concentrations on denitrification process as needed for biogeochemical models.  相似文献   

10.
The capacity for dissimilatory reduction of NO3 to N2 (N2O) and NH4+ was measured in 15NO3-amended marine sediment. Incubation with acetylene (7 × 10−3 atmospheres [normal]) caused accumulation of N2O in the sediment. The rate of N2O production equaled the rate of N2 production in samples without acetylene. Complete inhibition of the reduction of N2O to N2 suggests that the “acetylene blockage technique” is applicable to assays for denitrification in marine sediments. The capacity for reduction of NO3 by denitrification decreased rapidly with depth in the sediment, whereas the capacity for reduction of NO3 to NH4+ was significant also in deeper layers. The data suggested that the latter process may be equally as significant as denitrification in the turnover of NO3 in marine sediments.  相似文献   

11.
The aqueous decomposition of the iridium coordinated nitrosothiols (RSNOs) trans-K[IrCl4(CH3CN)NOSPh] (1), and K2[IrCl5(NOECyS)] (2, ECyS = cysteine ethyl ester), was studied by MS analysis of the gaseous products, ESI-MS, NMR, and UV-Vis spectroscopy. Bent NO (NO, nitroxyl anion), sulfenic acids and nitrite were observed as coordinated products in solution, while nitrous oxide (N2O) and nitrogen were detected in the gas phase. The formation of coordinated NO and N2O, a nitroxyl dimerization product, allows us to propose the formation of free nitroxyl (HNO) as an intermediate. Complex 1 decomposes 300 times slower than free PhSNO does. In both cases (1 and 2) kinetic results show a first order decomposition behavior and a very negative ΔS, which strongly indicates an associative rate-determining step. A proposed decomposition mechanism, supported by the experimental data and DFT calculations, involves, as the first step, nucleophilic attack of H2O on to the sulfur atom of the coordinated RSNO, producing an NO complex and free sulfenic acid, followed by two competing reactions: a ligand exchange reaction of this NO with the sulfenic acid or, to a minor extent, coordination of N2O to produce an NO/N2O complex which finally renders free N2 and coordinated NO2. Some of the produced NO is likely to be released from the metal center producing nitroxyl by protonation and finally N2O by dimerization and loss of H2O. In conclusion, the decomposition of these coordinated RSNOs occurs through a different mechanism than for the decomposition of free RSNOs. It involves the formation of sulfenic acids and coordinated NO, which is released from the complexes and protonated at the reaction pH producing nitroxyl (HNO), and ultimately N2O.  相似文献   

12.
In order to understand the role of nitrification and denitrification in the accumulation of nitrous oxide (N2O) in the hypolimnetic water of brackish Lake Nakaumi, the effects of dissolved oxygen (DO) concentration on these activities were investigated by incubation experiments. N2O was produced during the oxidation of NH4 + to NO2 in nitrification and during the reduction of NO3 to N2 in denitrification. N2O-producing activity by nitrification (N2ON) increased markedly with decreasing concentrations of DO. Low DO (10%–30% saturation) induced high N2ON. In contrast to nitrification, N2O-producing activity by denitrification (N2OD) decreased with decreasing concentrations of DO. Little N2O was accumulated during denitrification under low-level conditions of DO (10%–30%), because of further reduction of N2O to N2. It can therefore be assumed that N2O produced as the by-product of nitrification is concurrently reduced to N2 by denitrification under low-DO conditions. This would result in no substantial accumulation of N2O during active nitrification in the hypolimnetic water of Lake Nakaumi. Received: July 6, 2001 / Accepted: December 10, 2001  相似文献   

13.
Methyl fluoride (CH3F) and dimethyl ether (DME) inhibited nitrification in washed-cell suspensions of Nitrosomonas europaea and in a variety of oxygenated soils and sediments. Headspace additions of CH3F (10% [vol/vol]) and DME (25% [vol/vol]) fully inhibited NO2- and N2O production from NH4+ in incubations of N. europaea, while lower concentrations of these gases resulted in partial inhibition. Oxidation of hydroxylamine (NH2OH) by N. europaea and oxidation of NO2- by a Nitrobacter sp. were unaffected by CH3F or DME. In nitrifying soils, CH3F and DME inhibited N2O production. In field experiments with surface flux chambers and intact cores, CH3F reduced the release of N2O from soils to the atmosphere by 20- to 30-fold. Inhibition by CH3F also resulted in decreased NO3- + NO2- levels and increased NH4+ levels in soils. CH3F did not affect patterns of dissimilatory nitrate reduction to ammonia in cell suspensions of a nitrate-respiring bacterium, nor did it affect N2O metabolism in denitrifying soils. CH3F and DME will be useful in discriminating N2O production via nitrification and denitrification when both processes occur and in decoupling these processes by blocking NO2- and NO3- production.  相似文献   

14.
The source of N2O produced in soil is often uncertain because denitrification and nitrification can occur simultaneously in the same soil aggregate. A technique which exploits the differential sensitivity of these processes to C2H2 inhibition is proposed for distinguishing among gaseous N losses from soils. Denitrification N2O was estimated from 24-h laboratory incubations in which nitrification was inhibited by 10-Pa C2H2. Nitrification N2O was estimated from the difference between N2O production under no C2H2 and that determined for denitrification. Denitrification N2 was estimated from the difference between N2O production under 10-kPa C2H2 and that under 10 Pa. Laboratory estimates of N2O production were significantly correlated with in situ N2O diffusion measurements made during a 10-month period in two forested watersheds. Nitrous oxide production from nitrification was most important on well-drained sites of a disturbed watershed where ambient NO3 was high. In contrast, denitrification N2O was most important on poorly drained sites near the stream of the same watershed. Distinction between N2O production from nitrification and denitrification was corroborated by correlations between denitrification N2O and water-filled pore space and between nitrification N2O and ambient NO3. This technique permits qualitative study of environmental parameters that regulate gaseous N losses via denitrification and nitrification.  相似文献   

15.
Many coastal plain wetlands receive nutrient pollution from agricultural fields and are particularly vulnerable to saltwater incursion. Although wetlands are a major source of the greenhouse gases methane (CH4) and nitrous oxide (N2O), the consequences of salinization for greenhouse gas emissions from wetlands with high agricultural pollution loads is rarely considered. Here, we asked how saltwater exposure alters greenhouse gas emissions from a restored freshwater wetland that receives nutrient loading from upstream farms. During March to November 2012, we measured greenhouse gases along a ~2 km inundated portion of the wetland. Sampling locations spanned a wide chemical gradient from sites receiving seasonal fertilizer nitrogen and sulfate (SO4 2?) loads to sites receiving seasonal increases in marine salts. Concentrations and fluxes of CH4 were low (<100 µg L?1 and <10 mg m?2 h?1) for all sites and sampling dates when SO4 2? was high (>10 mg L?1), regardless of whether the SO4 2? source was agriculture or saltwater. Elevated CH4 (as high as 1,500 µg L?1 and 45 mg m?2 h?1) was only observed on dates when air temperatures were >27 °C and SO4 2? was <10 mg L?1. Despite elevated ammonium (NH4 +) for saltwater exposed sites, concentrations of N2O remained low (<5 µg L?1 and <10 µg m?2 h?1), except when fertilizer derived nitrate (NO3 ?) concentrations were high and N2O increased as high as 156 µg L?1. Our results suggest that although both saltwater and agriculture derived SO4 2? may suppress CH4, increases in N2O associated with fertilizer derived NO3 ? may offset that reduction in wetlands exposed to both agricultural runoff and saltwater incursion.  相似文献   

16.
The aims of this study were to simulate wet deposition of atmospheric nitrate (NO3?) onto forest soils and trace its fate via conversion spatially and temporally into gaseous products nitrous oxide (N2O) and dinitrogen (N2). The most likely mechanism is microbial denitrification, but an intermediate product nitrite (NO2?) can fuel N2O production via a chemical pathway involving reactions with iron and/or organic matter referred to as chemodenitrification. During summer months, we applied tracer amounts of 15N-labeled NO3? onto forest soils (pH ~ 4) at three sites in the White Mountain Region of New Hampshire, USA. We recovered 15N as N2O in 210 of 504 measurements (42%) versus 15N as N2 in 51 of 504 measurements (10%), suggesting partial microbial denitrification and/or chemodenitrification. When recovery occurred, the mean percent recovery of added 15N was just 1.1% as N2O, although N2 recovery was 33%. A site with old-growth trees had a larger percentage recovery as N2 (48%), whereas a site that had burned 100 years ago had a small percentage recovery as N2O (0.24%). The 15N composition of N2O in ambient air, collected before addition of the label, was markedly enriched in 15N. Since flux measurements were made 2 h after the addition, the results suggest that denitrification enzymes and conditions for chemodenitrification are present throughout the summer months but account for small amounts of NO3? conversion into N2O and N2.  相似文献   

17.
The heavy use of fertilizers in agricultural lands can result in significant nitrate (NO3) loadings to the aquatic environment. We hypothesized that biological denitrification in agricultural ditches and streams could be enhanced by adding elemental sulfur (So) to the sediment layer, where it could act as a biofilm support and electron donor. Using a bench-scale stream mesocosm with a bed of So granules, we explored NO3 removal fluxes as a function of the effluent NO3 concentrations. With effluent NO3 ranging from 0.5 mg N L−1 to 4.1 mg N L−1, NO3 removal fluxes ranged from 228 mg N m−2 d−1 to 708 mg N m−2 d−1. This is as much as 100 times higher than for agricultural drainage streams. Sulfate (SO42−) production was high due to aerobic sulfur oxidation. Molecular studies demonstrated that the So amendment selected for Thiobacillus species, and that no special inoculum was required for establishing a So-based autotrophic denitrifying community. Modeling studies suggested that denitrification was diffusion limited, and advective flow through the bed would greatly enhance NO3 removal fluxes. Our results indicate that amendment with So is an effective means to stimulate denitrification in a stream environment. To minimize SO42− production, it may be better to place So deeper in the sediment layer.  相似文献   

18.
Microzonation of denitrification was studied in stream sediments by a combined O2 and N2O microsensor technique. O2 and N2O concentration profiles were recorded simultaneously in intact sediment cores in which C2H2 was added to inhibit N2O reduction in denitrification. The N2O profiles were used to obtain high-resolution profiles of denitrification activity and NO3 distribution in the sediments. O2 penetrated about 1 mm into the dark-incubated sediments, and denitrification was largely restricted to a thin anoxic layer immediately below that. With 115 μM NO3 in the water phase, denitrification was limited to a narrow zone from 0.7 to 1.4 mm in depth, and total activity was 34 nmol of N cm−2 h−1. With 1,250 μM NO3 in the water, the denitrification zone was extended to a layer from 0.9 to 4.8 mm in depth, and total activity increased to 124 nmol of N cm−2 h−1. Within most of the activity zone, denitrification was not dependent on the NO3 concentration and the apparent Km for NO3 was less than 10 μM. Denitrification was the only NO3-consuming process in the dark-incubated stream sediment. Even in the presence of C2H2, a significant N2O reduction (up to 30% of the total N2O production) occurred in the reduced, NO3-free layers below the denitrification zone. This effect must be corrected for during use of the conventional C2H2 inhibition technique.  相似文献   

19.
The aggregates {[Zn(L1)]H2O} and {[Y(L2)]4Na3(H2O)2(MeOH)1.2}(NO3)3·2H2O·5.6MeOH have been assembled from complexes of imino-phosphonate monoester ligands [L1]2− {CH2[CH2NC(CH3)PO2(OMe)]2}2− and [L2]3− {N[CH2CH2NC(CH3)PO2(OMe)]3}3−, the topology of these materials differing from that of their imino-carboxylate analogues.  相似文献   

20.
A novel hexanuclear copper complex [Cu6(NO3)12(opytrizediam)2(H2O)][(CH3)2CO]0.5(CH3CH2CH2OH)0.5 (1) with a NO3 bridge has been synthesized by reaction of Cu(NO3)2 · 3H2O with the new potentially octadentate ligand opytrizediam in n-propanol/acetone solution (opytrizediam=N,N-{2,4-di[(di-pyridin-2-yl)amine]-1,3,5-triazine} ethylenediamine). A single-crystal X-ray diffraction analysis showed the presence of six structurally different copper centres. The coordination spheres of four copper(II) ions are best described as square-pyramidal CuN2O3 chromophores while the two other copper(II) ions are in a trigonal-bipyramidal CuN4O environment. Variable-temperature studies on 1 revealed a unique ferromagnetic coupling of two copper(II) ions bridged by a didentate nitrate anion and separated by a distance of 6.391(6) Å, with J=8.6(1) cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号