首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Early marine trophic interactions of wild and hatchery chum salmon (Oncorhynchus keta) were examined as a potential cause for the decline in harvests of adult wild chum salmon in Taku Inlet, Southeast Alaska. In 2004 and 2005, outmigrating juvenile chum salmon were sampled in nearshore habitats of the inlet (spring) and in epipelagic habitat at Icy Strait (summer) as they approached the Gulf of Alaska. Fish were frozen for energy density determination or preserved for diet analyses, and hatchery stocks were identified from the presence of thermal marks on otoliths. We compared feeding intensity, diets, energy density, and size relationships of wild and hatchery stocks (n = 3123) across locations and weeks. Only hatchery fish feeding intensity was negatively correlated with fish abundance. In both years, hatchery chum salmon were initially larger and had greater energy density than wild fish, but lost condition in early weeks after release as they adapted to feeding on wild prey assemblages. Diets differed between the stocks at all inlet locations, but did not differ for hatchery salmon between littoral and neritic habitats in the outer inlet, where the stocks overlapped most. Both diets and energy density converged by late June. Therefore, if density-dependent interactions affect wild chum salmon, these effects must be very rapid because survivors in Icy Strait showed few differences. Our study also demonstrates that hatchery release strategies used near Taku Inlet successfully promote early spatial segregation and prey partitioning, which reduce the probability of competition between wild and hatchery chum salmon stocks.  相似文献   

2.
Aggregate hatchery production of Pacific salmon in the Kamchatka region of the Russian Federation is very low (< 0.5% of total harvest, with five hatcheries releasing approximately 41 M juvenile salmon annually), but contributions in certain rivers can be substantial. Enhancement programs in these rivers may strongly influence fitness and production of wild salmon. In this paper we document significant divergence in demographic traits in hatchery salmon populations in the Bolshaya River and we estimate the proportion of hatchery chum salmon in the total run in the Paratunka River to demonstrate the magnitude of enhancement in this system. We observed a reduction in the expression of life history types in hatchery populations (ranging from 1 to 9 types) compared to wild populations (17 types) of sockeye salmon in the Bolshaya River. We found similar trends in Chinook salmon in the same river system. This reduced life history diversity may make these fish less resilient to changes in habitat and climate. We estimate hatchery chum salmon currently contribute 17-45% to the natural spawning population in the Paratunka River. As hatchery fish increase in numbers at natural spawning sites, this hatchery production may affect wild salmon production. It is important to investigate the risk of introgression between hatchery and wild salmon that can lead to reduction in salmon fitness in Kamchatka rivers, as well as the potential of ecological interactions that can have consequences on status of wild salmon and overall salmon production in this region.  相似文献   

3.
Off-channel habitat has become increasingly recognized as key for migratory fishes such as juvenile Chinook salmon (Oncorhynchus tshawytscha). Hence, floodplain habitat has been identified as critical for the continued persistence of California’s Central Valley salmon, particularly the Yolo Bypass, the primary floodplain of the Sacramento River. To provide insight into factors supporting juvenile salmon use of this 240 km2, partially leveed floodplain, we examined inter- and intra-annual relationships between environmental correlates and residency time, apparent growth, emigration, migratory phenotype, and survival over more than a decade for natural-origin (“wild”) fish and experimentally-released hatchery fish. Flood duration was positively associated with hatchery juveniles residing longer and achieving larger size. Wild juveniles grew larger and emigrated later with cumulative temperature experience (accumulated thermal units) and warmer average annual temperatures during flood years. Within years, both wild and hatchery salmon departed the floodplain as flood waters receded. Parr-sized juveniles dominated outmigrant composition, though fry and smolt-sized juveniles were also consistently observed. Survival to the ocean fishery was not significantly different between hatchery fish that reared in the Yolo Bypass versus those that reared in the main stem Sacramento River. Our study indicates improved frequency and duration of connectivity between the Sacramento River and the Yolo Bypass could increase off-channel rearing opportunities that expand the life history diversity portfolio for Central Valley Chinook salmon.  相似文献   

4.
Modern salmon hatcheries in Southeast Alaska were established in the 1970s when wild runs were at record low levels. Enhancement programs were designed to help rehabilitate depressed fisheries and to protect wild salmon stocks through detailed planning and permitting processes that included focused policies on genetics, pathology, and management. Hatcheries were located away from significant wild stocks, local sources were used to develop hatchery broodstocks, and juveniles are marked so management can target fisheries on hatchery fish. Initially conceived as a state-run system, the Southeast Alaska (SEAK) program has evolved into a private, non-profit concept centered around regional aquaculture associations run by fishermen and other stakeholders that pay for hatchery operations through landing fees and sale of fish. Today there are 15 production hatcheries and 2 research hatcheries in SEAK that between 2005 and 2009 released from 474 to 580 million (average 517 million) juvenile salmon per year. During this same period commercial harvest of salmon in the region ranged from 28 to 71 million salmon per year (average 49 million). Contributions of hatchery-origin fish to this harvest respectively averaged 2%, 9%, 19%, 20%, and 78% for pink, sockeye, Chinook, coho, and chum salmon. Both hatchery and wild salmon stocks throughout much of Alaska have experienced high marine survivals since the 1980s and 1990s resulting in record harvests over the past two decades. Although some interactions between hatchery salmon and wild salmon are unavoidable including increasing concerns over straying of hatchery fish into wild salmon streams, obvious adverse impacts from hatcheries on production of wild salmon populations in this region are not readily evident.  相似文献   

5.
Native species may show invasiveness toward a recipient ecosystem through increases in abundance as a result of artificial stocking events. Salmonid species are typical examples of native invaders whose abundance is increased after stocking with hatchery fish. This study evaluated the effects of hatchery chum salmon fry on sympatric wild masu salmon fry, benthic invertebrate prey, and algae, after a single stocking event in Mamachi stream, Hokkaido, northern Japan. The results suggested that the stocked hatchery chum salmon fry decreased the foraging efficiency and growth of the wild masu salmon fry through interspecific competition, and depressed the abundance of Ephemerellidae and total grazer invertebrates (Glossosomatidae, Heptageniidae, and Baetidae) through predation. Also, the hatchery chum salmon fry may increase algal biomass through depression of grazer abundance by predation (top-down effect). These results suggested that a single release of hatchery chum salmon fry into a stream may influence the recipient stream ecosystem.  相似文献   

6.
Bioenergetics modeling was used to estimate zooplankton prey consumption of hatchery and unmarked stocks of juvenile chum salmon (Oncorhynchus keta) migrating seaward in littoral (nearshore) and neritic (epipelagic offshore) marine habitats of southeastern Alaska. A series of model runs were completed using biophysical data collected in Icy Strait, a regional salmon migration corridor, in May, June, July, August, and September of 2001. These data included a temperature (1-m surface versus surface to 20-m average), zooplankton standing crop (surface to 20-m depth versus entire water column), chum salmon diet (percent weight of prey type consumed), energy densities, and weight. Known numbers of hatchery releases were used in a cohort reconstruction model to estimate total abundance of hatchery and wild chum salmon in the northern region of southeastern Alaska, given average survival to adults and for two different (low and high) early marine littoral mortality rate assumptions. Total prey consumption was relatively insensitive to temperature differences associated with the depths potentially utilized by juvenile chum salmon. However, the magnitudes and temporal patterns of total prey consumed differed dramatically between the low and high mortality rate assumptions. Daily consumption rates from the bioenergetics model and CPUE abundance from sampling in Icy Strait were used to estimate amount and percentage of zooplankton standing crop consumed by mixed stocks of chum salmon. We estimated that only a small percentage of the available zooplankton was consumed by juvenile chum salmon, even during peak abundances of marked hatchery and unmarked mixed stocks in July. Total daily consumption of zooplankton by all stock groups of juvenile chum salmon was estimated to be between 330 and 1764 g/km2d1 from June to September in the neritic habitat of Icy Strait. As with any modeling exercise, model outputs can be misleading if input parameters and underlying assumptions are not valid; therefore, additional studies are warranted, especially to determine physiological input parameters, and to improve abundance and mortality estimates specific to juvenile chum salmon. Future bioenergetics modeling is also needed to evaluate consumption by the highly abundant, vertically migrating planktivorous that co-occurred in our study; we suggest that these fishes have a greater impact on the zooplankton standing crop in Icy Strait than do hatchery stock groups of juvenile chum salmon.  相似文献   

7.
Ecological interactions between natural and hatchery juvenile salmon during their early marine residence, a time of high mortality, have received little attention. These interactions may negatively influence survival and hamper the ability of natural populations to recover. We examined the spatial distributions and size differences of both marked (hatchery) and unmarked (a high proportion of which are natural) juvenile Chinook salmon in the coastal waters of Oregon and Washington from May to June 1999–2009. We also explored potential trophic interactions and growth differences between unmarked and marked salmon. Overlap in spatial distribution between these groups was high, although catches of unmarked fish were low compared to those of marked hatchery salmon. Peak catches of hatchery fish occurred in May, while a prolonged migration of small unmarked salmon entered our study area toward the end of June. Hatchery salmon were consistently longer than unmarked Chinook salmon especially by June, but unmarked salmon had significantly greater body condition (based on length-weight residuals) for over half of the May sampling efforts. Both unmarked and marked fish ate similar types and amounts of prey for small (station) and large (month, year) scale comparisons, and feeding intensity and growth were not significantly different between the two groups. There were synchronous interannual fluctuations in catch, length, body condition, feeding intensity, and growth between unmarked and hatchery fish, suggesting that both groups were responding similarly to ocean conditions.  相似文献   

8.
About 31% of salmon harvested in Alaska comes from the hatchery production of hundreds of millions of pink and chum salmon and smaller numbers of sockeye, Chinook, and coho salmon. The numbers of hatchery-reared juveniles released in some areas are greater than the numbers of juveniles from wild populations. However, virtually nothing is known about the effects of hatchery fish on wild populations in Alaska. Possible effects of these interactions can be inferred from studies of salmonids in other areas, from studies of other animals, and from theory. Numerous studies show a complex relationship between the genetic architecture of a population and its environment. Adaptive responses to nature and anthropogenic selection can be influenced by variation at a single gene, or more often, by the additive effects of several genes. Studies of salmonids in other areas show that hatchery practices can lead to the loss of genetic diversity, to shifts in adult run timing and earlier maturity, to increases in parasite load, to increases in straying, to altered levels of boldness and dominance, to shifts in juvenile out-migration timing, and to changes in growth. Controlled experiments across generations show, and theory predicts, that the loss of adaptive fitness in hatchery salmon, relative to fitness in wild salmon, can occur on a remarkably short time scale. All of these changes can influence survival and impose selective regimes that influence genetically based adaptive traits. The preservation of adaptive potential in wild populations is an important buffer against diseases and climate variability and, hence, should be considered in planning hatchery production levels and release locations. The protection of wild populations is the foundation for achieving sustained harvests of salmon in Alaska.  相似文献   

9.
In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out‐migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post‐restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density‐dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.  相似文献   

10.
One of the strategies that can be used to reduce predation impacts to valued fish species is by swamping predators with more prey than they can eat. We examined whether this approach was viable by calculating the maximum bioenergetic consumption potential of non-native smallmouth bass Micropterus dolomieu on fall Chinook salmon Oncorhynchus tshawytscha juveniles in the Yakima River throughout the spring between 1998 and 2002 and comparing those estimates to previously published estimates of fall Chinook salmon consumption. We found that the smallmouth bass population consumed fall Chinook salmon well below their bioenergetic potential. However, individual smallmouth bass that were piscivorous were eating other food items at a level near satiation. Furthermore, the maximum consumption potential was relatively low prior to mid-April, and then increased substantially to a peak in May. Predation mortality to hatchery fall Chinook salmon could be reduced within a year by releasing hatchery fall Chinook salmon that will emigrate quickly prior to mid-April, when predation potential is still very low. However, attempting to swamp predators with hatchery Chinook salmon to benefit naturally produced Chinook salmon poses uncertain benefits to natural origin fish and likely unacceptable costs to hatchery fish. Considerable swamping is occurring by other naturally produced fish species in the Yakima River such as dace Rhinichthys spp., mountain whitefish Prosopium williamsoni, and crayfish Pacificastus spp. Therefore, it is important to consider impacts to these non-target species because they could have indirect predation impacts on Chinook salmon.  相似文献   

11.
Experiences of migratory species in one habitat may affect their survival in the next habitat, in what is known as carryover effects. These effects are especially relevant for understanding how freshwater experience affects survival in anadromous fishes. Here, we study the carryover effects of juvenile salmon passage through a hydropower system (Snake and Columbia rivers, northwestern United States). To reduce the direct effect of hydrosystem passage on juveniles, some fishes are transported through the hydrosystem in barges, while the others are allowed to migrate in‐river. Although hydrosystem survival of transported fishes is greater than that of their run‐of‐river counterparts, their relative juvenile‐to‐adult survival (hereafter survival) can be less. We tested for carryover effects using generalized linear mixed effects models of survival with over 1 million tagged Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (Salmonidae), migrating in 1999–2013. Carryover effects were identified with rear‐type (wild vs. hatchery), passage‐type (run‐of‐river vs. transported), and freshwater and marine covariates. Importantly, the Pacific Decadal Oscillation (PDO) index characterizing cool/warm (i.e., productive/nonproductive) ocean phases had a strong influence on the relative survival of rear‐ and passage‐types. Specifically, transportation benefited wild Chinook salmon more in cool PDO years, while hatchery counterparts benefited more in warm PDO years. Transportation was detrimental for wild Chinook salmon migrating early in the season, but beneficial for later season migrants. Hatchery counterparts benefited from transportation throughout the season. Altogether, wild fish could benefit from transportation approximately 2 weeks earlier during cool PDO years, with still a benefit to hatchery counterparts. Furthermore, we found some support for hypotheses related to higher survival with increased river flow, high predation in the estuary and plume areas, and faster migration and development‐related increased survival with temperature. Thus, pre‐ and within‐season information on local‐ and broad‐scale conditions across habitats can be useful for planning and implementing real‐time conservation programs.  相似文献   

12.
Estuaries provide crucial foraging resources and nursery habitat for threatened populations of anadromous salmon. As such, there has been a global undertaking to restore habitat and tidal processes in modified estuaries. The foraging capacity of these ecosystems to support various species of out‐migrating juvenile salmon can be quantified by monitoring benthic, terrestrial, and pelagic invertebrate prey communities. Here, we present notable trends in the availability of invertebrate prey at several sites within a restoring large river delta in Puget Sound, Washington, U.S.A. Three years after the system was returned to tidal influence, we observed substantial additions to amphipod, copepod, and cumacean abundances in newly accessible marsh channels (from 0 to roughly 5,000–75,000 individuals/m2). In the restoration area, terrestrial invertebrate colonization was dependent upon vegetative cover, with dipteran and hymenopteran biomass increasing 3‐fold between 1 and 3 years post‐restoration. While the overall biodiversity within the restoration area was lower than in the reference marsh, estimated biomass was comparable to or greater than that found within the other study sites. This additional prey biomass likely provided foraging benefits for juvenile Chinook, chum, and coho salmon. Primary physical drivers differed for benthic, terrestrial, and pelagic invertebrates, and these invertebrate communities are expected to respond differentially depending on organic matter exchange and vegetative colonization. Restoring estuaries may take decades to meet certain success criteria, but our study demonstrates rapid enhancements in foraging resources understood to be used for estuary‐dependent wildlife.  相似文献   

13.
The estuary of the Elwha River, on Washington’s Olympic Peninsula, has been degraded and simplified over the past century from sediment retention behind two large dams, levee construction, and channelization. With the removal of Elwha Dam and initiation of Glines Canyon Dam’s removal in fall 2011, sediment deposits will change the estuary and affect anadromous and nearshore marine fishes. Juvenile Chinook salmon commonly use estuaries and the river’s population is part of an Evolutionarily Significant Unit listed as Threatened under the U.S. Endangered Species Act. This study reports on monthly sampling in part of the river’s estuary from March 2007 through September 2011 to characterize the seasonal changes in relative abundance of yearlings and sub-yearlings, and size distributions prior to dam removal. Most (69 %) of the yearlings were caught in April, when this life history type was released from the hatchery, and to a lesser extent in May (28 %) and June (3 %). Yearlings caught in the estuary were smaller than those released from the hatchery (means: 153 mm?±?28 SD vs. 175 mm?±?5 SD), suggesting more rapid departure by larger fish. Sub-yearlings were much more abundant in the estuary, and were caught from March through November, increasing in mean fork length by 8.7 mm month-1. The hatchery-origin sub-yearlings were not marked externally and so were not distinguishable from natural origin fish. However, 39 % of the sub-yearlings were caught prior to June, when sub-yearlings were released from the hatchery, indicating substantial use of the estuary by natural-origin fish. Thus, even in a reduced state after a century of dam operation, the highly modified estuary was used over many months by juvenile Chinook salmon. The information on juvenile Chinook salmon prior to dam removal provides a basis for comparison to patterns in the future, when the anticipated increase in estuarine complexity may further enhance habitat use by juvenile Chinook salmon.  相似文献   

14.
Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi‐national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.  相似文献   

15.
Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.  相似文献   

16.
We reared juvenile Chinook salmon for two consecutive flood seasons within various habitats of the Cosumnes River and its floodplain to compare fish growth in river and floodplain habitats. Fish were placed in enclosures during times when wild salmon would naturally be rearing in floodplain habitats. We found significant differences in growth rates between salmon reared in floodplain and river enclosures. Salmon reared in seasonally inundated habitats with annual terrestrial vegetation experienced higher growth rates than those reared in a perennial pond on the floodplain. Growth of fish in the non-tidal river upstream of the floodplain varied with flow in the river. When flows were high, there was little growth and high mortality, but when the flows were low and clear, the fish grew rapidly. Fish displayed very poor growth in tidally influenced river habitat below the floodplain, a habitat type to which juveniles are commonly displaced during high flow events due to a lack of channel complexity in the main-stem river. Overall, ephemeral floodplain habitats supported higher growth rates for juvenile Chinook salmon than more permanent habitats in either the floodplain or river. Variable responses in both growth and mortality, however, indicate the importance of providing habitat complexity for juvenile salmon in floodplain reaches of streams, so fish can find optimal places for rearing under different flow conditions.  相似文献   

17.
We review studies of interactions between hatchery and wild Pacific salmon in the Russian Far East. This includes the role of hatchery practices that result in premature migration to the sea and increased mortality, and data on feeding and territorial competition between juveniles of hatchery and wild origin. In the course of downstream migration many juvenile hatchery salmon are eliminated by wild salmon predation. During the marine period, Japanese hatchery chum salmon (Oncorhynchus keta) distribution overlaps the distribution of Russian wild salmon. Consequently, replacement of wild populations by hatchery fishes, as a result of abundant juvenile hatchery releases combined with extensive poaching in spawning grounds, is apparent in some Russian rivers. Interactions between the populations occur in all habitats. The importance of conservation of wild salmon populations requires a more detailed study of the consequences of interactions between natural and artificially reared fishes.  相似文献   

18.
I studied inter- and intraspecific competition in two hatchery stocks: landlocked salmon with long-hatchery background and a heterogenic brown trout stock. These species are potential competitors in the natural environment when landlocked salmon is being restored to wild by stocking hatchery juveniles. Behavioural responses were studied in four indoor laboratory flumes (400 cm long and 37 cm wide) and habitat use in six semi-natural outdoor streams (26 m long and 1.5 m long). Video recordings were used to monitor fish behaviour and electrofishing for fish positioning in the outdoor channels. The study design included five treatments: two densities of brown trout and salmon in solitary and both species together. The results of the study demonstrated that juvenile brown trout changed their behaviour in laboratory streams in response to presence of the landlocked salmon and the density of the conspecifics also tended to alter the habitat use by brown trout in semi-natural streams. Landlocked salmon juveniles showed no response to treatments. I conclude that possible poor adaptive ability to conditions outside hatchery by the hatchery salmon together and more competitive brown trout stocks may limit the success of management action in restoring landlocked salmon back to their natural streams of stocking.  相似文献   

19.
For an estuarine restoration project to be successful it must reverse anthropogenic effects and restore lost ecosystem functions. Restoration projects that aim to rehabilitate endangered species populations make project success even more important, because if misjudged damage to already weakened populations may result. Determining project success depends on our ability to assess the functional state or “performance” and the trajectory of ecosystem development. Mature system structure is often the desired “end point” of restoration and is assumed to provide maximum benefit for target species; however, few studies have measured linkages between structure and function and possible benefits available from early recovery stages. The Salmon River estuary, Oregon, U.S.A., offers a unique opportunity to simultaneously evaluate several estuarine restoration projects and the response of the marsh community while making comparisons with a concurring undiked portion of the estuary. Dikes installed in three locations in the estuary during the early 1960s were removed in 1978, 1987, and 1996, creating a “space‐for‐time substitution” chronosequence. Analysis of the marsh community responses enables us to use the development state of the three recovering marshes to determine a trajectory of estuarine recovery over 23 years and to make comparisons with a reference marsh. We assessed the rate and pattern of juvenile salmon habitat development in terms of fish density, available prey resources, and diet composition of wild juvenile Oncorhynchus tshawytscha (chinook salmon). Results from the outmigration of 1998 and 1999 show differences in fish densities, prey resources, and diet composition among the four sites. Peaks in chinook salmon densities were greatest in the reference site in 1998 and in the youngest (1996) site in 1999. The 1996 marsh had higher densities of chironomids (insects; average 864/m2) and lower densities of amphipods (crustaceans; average 8/m3) when compared with the other sites. Fauna differences were reflected in the diets of juvenile chinook with those occupying the 1978 and 1996 marshes based on insects (especially chironomids), whereas those from the 1987 and reference marshes were based on crustaceans (especially amphipods). Tracking the development of recovering emergent marsh ecosystems in the Salmon River estuary reveals significant fish and invertebrate response in the first 2 to 3 years after marsh restoration. This pulse of productivity in newly restored systems is part of the trajectory of development and indicates some level of early functionality and the efficacy of restoring estuarine marshes for juvenile salmon habitat. However, to truly know the benefits consumers experience in recovering systems requires further analysis that we will present in forthcoming publications.  相似文献   

20.
Recent studies suggest that hatchery-reared fish can have smaller brain-to-body size ratios than wild fish. It is unclear, however, whether these differences are due to artificial selection or instead reflect differences in rearing environment during development. Here we explore how rearing conditions influence the development of two forebrain structures, the olfactory bulb and the telencephalon, in juvenile Chinook salmon (Oncorhynchus tshawytscha) spawned from wild-caught adults. First, we compared the sizes of the olfactory bulb and telencephalon between salmon reared in a wild stream vs. a conventional hatchery. We next compared the sizes of forebrain structures between fish reared in an enriched NATURES hatchery and fish reared in a conventional hatchery. All fish were size-matched and from the same genetic cohort. We found that olfactory bulb and telencephalon volumes relative to body size were significantly larger in wild fish compared to hatchery-reared fish. However, we found no differences between fish reared in enriched and conventional hatchery treatments. Our results suggest that significant differences in the volume of the olfactory bulb and telencephalon between hatchery and wild-reared fish can occur within a single generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号