首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.

Background

Sevoflurane has been demonstrated to vasodilate the foeto-placental vasculature. We aimed to determine the contribution of modulation of potassium and calcium channel function to the vasodilatory effect of sevoflurane in isolated human chorionic plate arterial rings.

Methods

Quadruplicate ex vivo human chorionic plate arterial rings were used in all studies. Series 1 and 2 examined the role of the K+ channel in sevoflurane-mediated vasodilation. Separate experiments examined whether tetraethylammonium, which blocks large conductance calcium activated K+ (KCa++) channels (Series 1A+B) or glibenclamide, which blocks the ATP sensitive K+ (KATP) channel (Series 2), modulated sevoflurane-mediated vasodilation. Series 3 – 5 examined the role of the Ca++ channel in sevoflurane induced vasodilation. Separate experiments examined whether verapamil, which blocks the sarcolemmal voltage-operated Ca++ channel (Series 3), SK&F 96365 an inhibitor of sarcolemmal voltage-independent Ca++ channels (Series 4A+B), or ryanodine an inhibitor of the sarcoplasmic reticulum Ca++ channel (Series 5A+B), modulated sevoflurane-mediated vasodilation.

Results

Sevoflurane produced dose dependent vasodilatation of chorionic plate arterial rings in all studies. Prior blockade of the KCa++ and KATP channels augmented the vasodilator effects of sevoflurane. Furthermore, exposure of rings to sevoflurane in advance of TEA occluded the effects of TEA. Taken together, these findings suggest that sevoflurane blocks K+ channels. Blockade of the voltage-operated Ca++channels inhibited the vasodilator effects of sevoflurane. In contrast, blockade of the voltage-independent and sarcoplasmic reticulum Ca++channels did not alter sevoflurane vasodilation.

Conclusion

Sevoflurane appears to block chorionic arterial KCa++ and KATP channels. Sevoflurane also blocks voltage-operated calcium channels, and exerts a net vasodilatory effect in the in vitro foeto-placental circulation.  相似文献   

2.

Main conclusion

Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na + induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na+ significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na+ also induced a significant K+ efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv′/Fm′ were linked to K+ homeostasis in the mesophyll tissue. Increased apoplastic Na+ concentrations induced vanadate-sensitive net H+ efflux, presumably mediated by the plasma membrane H+-ATPase. It is concluded that the observed pump’s activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.  相似文献   

3.

Key message

The molecular mechanism of potassium ion transport across membranes in conifers is poorly known. We isolated and analyzed a gene encoding a potassium transporter from the conifer Cryptomeria japonica.

Abstract

Potassium ion (K+) is an essential and the most abundant intracellular cation in plants. The roles of K+ in various aspects of plant life are closely linked to its transport across biological membranes such as the plasma membrane and the tonoplast, which is mediated by membrane-bound transport proteins known as transporters and channels. Information on the molecular basis of K+ membrane transport in trees, especially in conifers, is currently limited. In this study, we isolated one complementary DNA, CjKUP1, which is homologous to known plant K+ transporters, from Cryptomeria japonica. Complementation tests using an Escherichia coli mutant, which is deficient in K+ uptake activity, was conducted to examine the K+ uptake function of the protein encoded by CjKUP1. Transformation of the K+-uptake-deficient mutant with CjKUP1 complemented the deficiency of this mutant. This result indicates that CjKUP1 has a function of K+ uptake. The expression levels of CjKUP1 in male strobili were markedly higher from late September to early October than in other periods. The expression levels in male and female strobili were higher than those in other organs such as needles, inner bark, differentiating xylem, and roots. These results indicate that CjKUP1 is mainly involved in K+ membrane transport in the cells of reproductive organs of C. japonica trees, especially in male strobili during pollen differentiation.  相似文献   

4.

Background

Imiquimod (IQ) is known as an agonist of Toll-like receptor 7 (TLR7) and is widely used to treat various infectious skin diseases. However, it causes severe itching sensation as its side effect. The precise mechanism of how IQ causes itching sensation is unknown. A recent report suggested a molecular target of IQ as TLR7 expressed in dorsal root ganglion (DRG) neurons. However, we recently proposed a TLR7-independent mechanism, in which the activation of TLR7 is not required for the action of IQ in DRG neurons. To resolve this controversy regarding the involvement of TLR7 and to address the exact molecular identity of itching sensation by IQ, we investigated the possible molecular target of IQ in DRG neurons.

Findings

When IQ was applied to DRG neurons, we observed an increase in action potential (AP) duration and membrane resistance both in wild type and TLR7-deficient mice. Based on these results, we tested whether the treatment of IQ has an effect on the activity of K+ channels, Kv1.1 and Kv1.2 (voltage-gated K+ channels) and TREK1 and TRAAK (K2P channels). IQ effectively reduced the currents mediated by both K+ channels in a dose-dependent manner, acting as an antagonist at TREK1 and TRAAK and as a partial antagonist at Kv1.1 and Kv1.2.

Conclusions

Our results demonstrate that IQ blocks the voltage-gated K+ channels to increase AP duration and K2P channels to increase membrane resistance, which are critical for the membrane excitability of DRG neurons. Therefore, we propose that IQ enhances the excitability of DRG neurons by blocking multiple potassium channels and causing pruritus.  相似文献   

5.
We show that the voltage-gated K+ and Ca2+ currents of rat osteoblastic cells are strongly modulated by arachidonic acid (AA), and that these modulations are very sensitive to the AA concentration. At 2 or 3 μm, AA reduces the amplitude and accelerates the inactivation of the K+ current activated by depolarization; at higher concentrations (≥5 μm), AA still blocks this K+ current, but also induces a very large noninactivating K+ current. At 2 or 3 μm, AA enhances the T-type Ca2+ current, close to its threshold of activation, whereas at 10 μm, it blocks that current. AA (1–10 μm) also blocks the dihydropyridine-sensitive L-type Ca2+ current. Thus, the effect of AA on Ca2+ entry through voltage-gated Ca2+ channels can change qualitatively with the AA concentration: at 2 or 3 μm, AA will favor Ca2+ entry through T channels, both by lowering the voltage-gated K+ conductance and by increasing the T current, whereas at 10 μm, AA will prevent Ca2+ entry through voltage-gated Ca2+ channels, both by inducing a K+ conductance and by blocking Ca2+ channels.  相似文献   

6.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

7.

Background

Recent data provide significant evidence to support the hypothesis that there are sub-populations of cells within solid tumors that have an increased tumor initiating potential relative to the total tumor population. CD133, a cell surface marker expressed on primitive cells of neural, hematopoietic, endothelial and epithelial lineages has been identified as a marker for tumor initiating cells in solid tumors of the brain, colon, pancreas, ovary and endometrium. Our objectives were to assess the relative level of CD133 expressing cells in primary human endometrial tumors, confirm their tumorigenic potential, and determine whether CD133 expression was epigenetically modified.

Methods

We assessed CD133 expression in primary human endometrial tumors by flow cytometry and analyzed the relative tumorigenicity of CD133+ and CD133- cells in an in vivo NOD/SCID mouse model. We assessed potential changes in CD133 expression over the course of serial transplantation by immunofluorescence and flow cytometry. We further examined CD133 promoter methylation and expression in normal endometrium and malignant tumors.

Results

As determined by flow cytometric analysis, the percentage of CD133+ cells in primary human endometrial cancer samples ranged from 5.7% to 27.4%. In addition, we confirmed the tumor initiating potential of CD133+ and CD133- cell fractions in NOD/SCID mice. Interestingly, the percentage of CD133+ cells in human endometrial tumor xenografts, as evidenced by immunofluorescence, increased with serial transplantation although this trend was not consistently detected by flow cytometry. We also determined that the relative levels of CD133 increased in endometrial cancer cell lines following treatment with 5-aza-2'-deoxycytidine suggesting a role for methylation in the regulation of CD133. To support this finding, we demonstrated that regions of the CD133 promoter were hypomethylated in malignant endometrial tissue relative to benign control endometrial tissue. Lastly, we determined that methylation of the CD133 promoter decreases over serial transplantation of an endometrial tumor xenograft.

Conclusions

These findings support the hypotheses that CD133 expression in endometrial cancer may be epigenetically regulated and that cell fractions enriched for CD133+ cells may well contribute to endometrial cancer tumorigenicity, pathology and recurrence.  相似文献   

8.
9.

Introduction

CD4+ T cells express K2P5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K2P5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K2P5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients.

Methods

Expression levels of K2P5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K2P5.1.

Results

K2P5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K2P5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K2P5.1 expression to disease activity parameters during a longitudinal follow-up for six months.

Conclusions

Disease activity in RA patients correlates strongly with K2P5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K2P5.1 as a potential biomarker for disease activity and differential diagnosis.  相似文献   

10.
As in other salivary glands, the secretory cells of the sheep parotid have a resting K+ conductance that is dominated by BK channels, which are activated by acetylcholine (ACh) and are blocked by tetraethylammonium (TEA). Nevertheless, perfusion studies indicate that TEA does not inhibit ACh-evoked fluid secretion or K+ efflux from intact sheep parotid glands. In the present study, we have used whole-cell patch clamp techniques to show that ACh activates K+ and Cl conductances in sheep parotid secretory cells by increasing intracellular free Ca2+, and we have compared the blocker sensitivity of the ACh-evoked whole-cell K+ current to the previously reported blocker sensitivity of the BK channels seen in these cells.The ACh-induced whole-cell K+ current was not blocked by TEA (10 mmol/l) or verapamil (100 mol/l), both of which block the resting K+ conductance and inhibit BK channels in these cells. Quinine (1 mmol/l) and quinidine (1 mmol/l), although only weak blockers of the resting K+ conductance, inhibited the ACh-evoked current at 0 mV (K+ current), by 68% and 78%, respectively. 4-Aminopyridine (10 mmol/l) partially inhibited the ACh-induced K+ current and caused it to fluctuate. It also caused the resting membrane currents to fluctuate, possibly by altering cytosolic free Ca2+. Ba2+ (100 mol/l), a blocker of the inwardly rectifying K+ conductance in sheep parotid cells, had no effect on the ACh-induced K+ current.We conclude that the ACh-induced K+ conductance in sheep parotid cells is pharmacologically distinct from both the outwardly rectifying (BK) K+ conductance and the inwardly rectifying K+ conductance seen in unstimulated cells. Given that in vitro perfusion and K+ efflux studies on other salivary glands in which BK channels dominate the resting conductance (e.g., the rat mandibular, rat parotid and mouse mandibular glands) have revealed an insensitivity to TEA, suggesting that BK channels do not carry the ACh-evoked K+ current, we propose that BK channels do not contribute substantially to the K+ current evoked by ACh in the secretory cells of most salivary glands.This project was supported by the Australian Research Council. We thank Dr. N. Sangster, Dr. J. Rothwell and Mr. R. Murphy for giving us access to their sheep.  相似文献   

11.
12.

Background

The synergic action of KHCO3 and D-ribose is tested on A72 and HTB-126 cell lines proliferation using K:D-Rib solution. Altered Na+/K+ ATPase expression and activity were shown in patients with cancer. Studies in human epithelial-derived malignancies indicate that K+ depletion also occurs, contributing to the increased intracellular Na+/K+ ratio [1]. D-ribose transformed to piruvate, enters into the Krebs's cycle and has a key role on energetic metabolism. The up-regulation of glycolysis in tumor cells is already well known and it is the rationale of F18-FDG PET diagnostic technique. D-ribose is synthesized by the non-oxidative transketolase PPP reaction.

Results

Results with different K:D-Rib concentrations show that MTT salt interferes with K:D-Rib solution and therefore this method is not reliable. The UV/VIS measurements show that K:D-Rib solutions reduce MTT salt to formazan in absence of cells. Cell proliferation has then been evaluated analysing the digital photos of the Giemsa stained cells with MCID? software. At 5 mM K:D-Rib concentration, the cell growth arrests between 48 h and 72 h; in fact the cell number after 48 h is around the same with respect to the control after 72 h. In case of HTB-126 human cancer cells, the growth rate was valuated counting the splitting times during 48 days: control cells were split sixteen times while 5 mM treated cells eleven times. Most relevant, the clonogenic assay shows that nine colonies are formed in the control cells while only one is formed in the 5 mM and none in 10 mM treated cells.

Conclusions

The K:D-Rib solution has an antioxidant behaviour also at low concentrations. Incubation with 5 mM K:D-Rib solution on A72 cells shows a cytostatic effect at 5 mM, but it needs more than 24 h of incubation time to evidence this effect on cell proliferation. At the same concentration on human HTB-126 cells, K:D-Rib solution shows a clear replication slowing but the cytostatic effect at 10 mM K:D-Rib solution only. Results on A72 cells indicate the K+ uptake could be determinant either to arrest or to slow down cell growth.  相似文献   

13.

Background

Membrane depolarization is associated with breast cancer. Depolarization-activated voltage-gated ion channels are directly implicated in the initiation, proliferation, and metastasis of breast cancer.

Methods

In this study, the role of voltage-gated potassium and calcium ion channel modulation was explored in two different invasive ductal human carcinoma cell lines, MDA-MB-231 (triple-negative) and MCF7 (estrogen-receptor-positive).

Results

Resting membrane potential is more depolarized in MCF7 and MDA-MB-231 cells compared to normal human mammary epithelial cells. Increasing extracellular potassium concentration up to 50 mM depolarized membrane potential and greatly increased cell growth. Tetraethylammonium (TEA), a non-specific blocker of voltage-gated potassium channels, stimulated growth of MCF7 cells (control group grew by 201 %, 1 mM TEA group grew 376 %). Depolarization-induced calcium influx was hypothesized as a requirement for growth of human breast cancer. Removing calcium from culture medium stopped growth of MDA and MCF7 cells, leading to cell death after 1 week. Verapamil, a blocker of voltage-gated calcium channels clinically used in treating hypertension and coronary disease, inhibited growth of MDA cells at low concentration (10–20 μM) by 73 and 92 % after 1 and 2 days, respectively. At high concentration (100 μM), verapamil killed >90 % of MDA and MCF7 cells after 1 day. Immunoblotting experiments demonstrated that an increased expression of caspase-3, critical in apoptosis signaling, positively correlated with verapamil concentration in MDA cells. In MCF7, caspase-9 expression is increased in response to verapamil.

Conclusions

Our results support our hypotheses that membrane depolarization and depolarization-induced calcium influx stimulate proliferation of human breast cancer cells, independently of cancer subtypes. The underlying mechanism of verapamil-induced cell death involves different caspases in MCF7 and MDA-MB-231. These data suggest that voltage-gated potassium and calcium channels may be putative targets for pharmaceutical remediation in human invasive ductal carcinomas.
  相似文献   

14.
Plant growth and development is driven by osmotic processes. Potassium represents the major osmotically active cation in plants cells. The uptake of this inorganic osmolyte from the soil in Arabidopsis involves a root K+ uptake module consisting of the two K+ channel α-subunits, AKT1 and AtKC1. AKT1-mediated potassium absorption from K+-depleted soil was shown to depend on the calcium-sensing proteins CBL1/9 and their interacting kinase CIPK23. Here we show that upon activation by the CBL·CIPK complex in low external potassium homomeric AKT1 channels open at voltages positive of EK, a condition resulting in cellular K+ leakage. Although at submillimolar external potassium an intrinsic K+ sensor reduces AKT1 channel cord conductance, loss of cytosolic potassium is not completely abolished under these conditions. Depending on channel activity and the actual potassium gradients, this channel-mediated K+ loss results in impaired plant growth in the atkc1 mutant. Incorporation of the AtKC1 subunit into the channel complex, however, modulates the properties of the K+ uptake module to prevent K+ loss. Upon assembly of AKT1 and AtKC1, the activation threshold of the root inward rectifier voltage gate is shifted negative by approximately −70 mV. Additionally, the channel conductance gains a hypersensitive K+ dependence. Together, these two processes appear to represent a safety strategy preventing K+ loss through the uptake channels under physiological conditions. Similar growth retardation phenotypes of akt1 and atkc1 loss-of-function mutants in response to limiting K+ supply further support such functional interdependence of AKT1 and AtKC1. Taken together, these findings suggest an essential role of AtKC1-like subunits for root K+ uptake and K+ homeostasis when plants experience conditions of K+ limitation.Fundamental plant functions such as control of the membrane potential, osmo-regulation, and turgor-driven growth and movements are based on the availability to gain high cellular potassium concentrations (1). The absorption of this inorganic osmolyte from the soil by the root therefore represents a pivotal process for plant life. Classical experiments by Epstein et al. in 1963 (2) described K+ root uptake as a biphasic process mediated by two uptake mechanisms: high affinity potassium transport with apparent affinities of ∼20 μm and a low affinity transport system with Km values in the millimolar range. During the last decades several molecular components of potassium transport systems have been identified and functionally characterized in plants (3, 4). Mutant analyses, heterologous expression, as well as radiotracer uptake experiments characterized the K+ channels AKT1·AtKC1 and members of the HAK·KT·KUP family as major components of the Arabidopsis thaliana root-localized potassium transport system (59). In this study we focused on AKT1 and AtKC1, members of the Arabidopsis Shaker-like K+ channel family. AKT1 is a voltage-dependent inward-rectifying K+ channel mediating potassium uptake over a wide range of external potassium concentrations (1015). Root cells of the akt1-1 loss-of-function mutant completely lack inward rectifying K+ currents (12). As a consequence the growth of akt1-1 seedlings is strongly impaired on low potassium medium (100 μm and less) (11, 12, 15). Rescue of yeast growth on 20 μm K+ and patch clamp experiments (16, 17) directly demonstrated that plant inward rectifying K+ channels are capable of serving as high affinity potassium uptake transporters. AtKC1 shares its expression pattern with AKT1 (1820). AtKC1 α-subunits, however, neither form functional channels in akt1-1 knock-out plants nor in heterologous expression systems. In contrast to root cells of akt1-1 loss of function mutants, root protoplasts of AtKC1 null mutants (atkc1-f) still exhibit inward rectifying potassium currents most likely derived from homomeric AKT1 tetramers (20). Inward K+ currents in this atkc1-f mutant were characterized by a more positive activation voltage. These data suggested that the AtKC1 α-subunits do not form K+ channels per se but modulate the properties of the AKT1·AtKC1 heterocomplex (2022). Previously, two groups in their ground-breaking studies demonstrated that AKT1 is activated by the CBL2-interacting, serine/threonine kinase, CIPK23, particularly under low K+ conditions (23, 24). CIPK23 itself was shown to be activated by the two calcineurin B-like proteins, CBL1 and 9, acting in a Ca2+-dependent manner upstream of CIPK23 (25, 26). Genetic disruption of these elements resulted in transgenic plants exhibiting a phenotype comparable with that of the AKT1 loss of function mutant. This regulatory system, based on a calcium sensor, a protein kinase, and a K+ channel, was functionally reconstituted in Xenopus oocytes (23, 24, 27), suggesting that these elements are essential and sufficient to operate as a low K+-sensitive potassium uptake system. Here we report on the physiological properties of the heteromeric K+ uptake module formed by the predominant root potassium uptake channel subunits, AKT1 and AtKC1 and its regulating kinase complex, CBL1 and CIPK23. Our studies show that the physical interaction of the CBL1·CIPK23 complex is specific for AKT1 channels and does not involve the AtKC1 subunit. AKT1 possesses a K+ (absence) sensor affecting channel activity at submillimolar K+ concentrations by strongly reducing its maximal cord conductance. Despite this K+ sensor, upon activation, AKT1 homomeric channels were shown to represent a potassium leak at low external potassium concentrations. Integration of AtKC1 into the K+ uptake module, however, prevented potassium loss by modulating both the voltage sensor and conductance in the channel complex. Moreover, activation of the AKT1-like maize channel ZMK1 by CBL1·CIPK23 suggests a conserved interaction and regulation across monocot and dicotyledonous plant species. Our biophysical studies as well as growth assays with plant mutant lines lacking the respective channels underline that acquisition of potassium under limiting K+ conditions is mediated via the root AKT1·AtKC1 K+ uptake channel complex.  相似文献   

15.

Background  

The voltage gated potassium (K+) channels Eag and HERG have been implicated in the pathogenesis of various cancers, through association with cell cycle changes and programmed cell death. The role of these channels in the onset and progression of ovarian cancer is unknown. An understanding of mechanism by which Eag and HERG channels affect cell proliferation in ovarian cancer cells is required and therefore we investigated their role in cell proliferation and their effect on the cell cycle and apoptosis of ovarian cancer cells.  相似文献   

16.

Background

The tumor-initiating capacity of many cancers is considered to reside in a small subpopulation of cells (cancer stem cells). We have previously shown that rare prostate epithelial cells with a CD133+2β1 hi phenotype have the properties of prostate cancer stem cells. We have compared gene expression in these cells relative to their normal and differentiated (CD133-2β1 low) counterparts, resulting in an informative cancer stem cell gene-expression signature.

Results

Cell cultures were generated from specimens of human prostate cancers (n = 12) and non-malignant control tissues (n = 7). Affymetrix gene-expression arrays were used to analyze total cell RNA from sorted cell populations, and expression changes were selectively validated by quantitative RT-PCR, flow cytometry and immunocytochemistry. Differential expression of multiple genes associated with inflammation, cellular adhesion, and metastasis was observed. Functional studies, using an inhibitor of nuclear factor κB (NF-κB), revealed preferential targeting of the cancer stem cell and progenitor population for apoptosis whilst sparing normal stem cells. NF-κB is a major factor controlling the ability of tumor cells to resist apoptosis and provides an attractive target for new chemopreventative and chemotherapeutic approaches.

Conclusion

We describe an expression signature of 581 genes whose levels are significantly different in prostate cancer stem cells. Functional annotation of this signature identified the JAK-STAT pathway and focal adhesion signaling as key processes in the biology of cancer stem cells.  相似文献   

17.
Summary The gustatory sensory system provides animals with a rapid chemical analysis of a potential food substance providing information necessary to facilitate ingestion or rejection of the food. The process of gustatory transduction is initiated in the taste cells in the lingual epithelium. However, due to the small size, scarcity of the cells and their location, embedded in a keratinized squamous epithelium, it has been difficult to study the primary events in the transduction process. Recently, we have developed a preparation of dissociated rat taste cells that permits studies of the taste transduction process in single isolated cells. We have now investigated the electrophysiological properties of the rat taste cells using the patch-clamp technique. We have identified two populations of cells within the taste bud: one expressing a voltage-dependent potassium current and the second containing both voltage-dependent sodium and potassium currents. The potassium current in both cell groups is blocked by external TEA, Ba2+, and quinine. Two types of K+ channels have been identified: a 90-pS delayed rectifier K+ channel and a maxi calcium-activated K+ channel. The sodium current is blocked by TTX, but not by amiloride.  相似文献   

18.

Background

Background K+ channels are the principal determinants of the resting membrane potential (RMP) in cardiac myocytes and thus, influence the magnitude and time course of the action potential (AP).

Methods

RT-PCR and in situ hybridization are used to study the distribution of TASK-1 and whole-cell patch clamp technique is employed to determine the functional expression of TASK-1 in embryonic chick heart.

Results

Chicken TASK-1 was expressed in the early tubular heart, then substantially decreased in the ventricles by embryonic day 5 (ED5), but remained relatively high in ED5 and ED11 atria. Unlike TASK-1, TASK-3 was uniformly expressed in heart at all developmental stages. In situ hybridization studies further revealed that TASK-1 was expressed throughout myocardium at Hamilton-Hamburger stages 11 and 18 (S11 &; S18) heart. In ED11 heart, TASK-1 expression was more restricted to atria. Consistent with TASK-1 expression data, patch clamp studies indicated that there was little TASK-1 current, as measured by the difference currents between pH 8.4 and pH 7.4, in ED5 and ED11 ventricular myocytes. However, TASK-1 current was present in the early embryonic heart and ED11 atrial myocytes. TASK-1 currents were also identified as 3 μM anandamide-sensitive currents. 3 μM anandamide reduced TASK-1 currents by about 58% in ED11 atrial myocytes. Zn2+ (100 μM) which selectively inhibits TASK-3 channel at this concentration had no effect on TASK currents. In ED11 ventricle where TASK-1 expression was down-regulated, IK1 was about 5 times greater than in ED11 atrial myocytes.

Conclusion

Functional TASK-1 channels are differentially expressed in the developing chick heart and TASK-1 channels contribute to background K+ conductance in the early tubular embryonic heart and in atria. TASK-1 channels act as a contributor to background K+ current to modulate the cardiac excitability in the embryonic heart that expresses little IK1.  相似文献   

19.

Background and aims

Saline soils limit plant production worldwide through osmotic stress, specific-ion toxicities, and nutritional imbalances.

Methods

The ability of Ca2+ and K+ to alleviate toxicities of Na+ and Mg2+ was examined using 89 treatments in short-term (48 h) solution culture studies for cowpea (Vigna unguiculata (L.) Walp.) roots. Root elongation was related to ionic activities at the outer surface of the root plasma membrane.

Results

The addition of K+ was found to alleviate the toxic effects of Na+, and supplemental Ca2+ improved growth further in these partially-alleviated solutions where K+ was present. Therefore, Na+ appears to interfere with K+ metabolism, and Ca2+ reduces this interference. Interestingly, the ability of Ca2+ to improve K-alleviation of Na+ toxicity is non-specific, with Mg2+ having a similar effect. In contrast, the addition of Ca2+ to Na-toxic solutions in the absence of K+ did not improve growth, suggesting that Ca2+ does not directly reduce Na+ toxicity in these short-term studies (for example, by reducing Na+ uptake) when supplied at non-deficient levels. Finally, K+ did not alleviate Mg2+ toxicity, suggesting that Mg2+ is toxic by a different mechanism to Na+.

Conclusions

Examination of how the toxic effects of salinity are alleviated provides clues as to the underlying mechanisms by which growth is reduced.  相似文献   

20.
Summary Calcium-activated potassium channels were the channels most frequently observed in primary cultured normal mammary cell and in the established mammary tumor cell, MMT060562. In both cells, single-channel and whole-cell clamp recordings sometimes showed slow oscillations of the Ca2+-gated K+ current. The characteristics of the Ca2+-activated K+ channels in normal and cancerous mammary cells were quite similar. The slope conductances changed from 8 to 70 pS depending on the mode of recording and the ionic composition in the patch electrode. The open probability of this channel increased between 0.1 to 1 m of the intracellular Ca2+, but it was independent of the membrane potential.Charybdotoxin reduced the activity of the Ca2+-activated K+ channel and the oscillation of the membrane current, but apamin had no apparent effect. The application of tetraethylammonium (TEA) from outside and BaCl2 from inside of the cell diminished the activity of the channel. The properties of this channel were different from those of both the large conductance (BK or MAXI K) and small conductance (SK) type Ca2+-activated K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号