首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang X  Wen X  Yan H  Ding K  Zhao F  Hu M 《Bioresource technology》2011,102(3):2352-2357
To determine whether functional stability was correlated with a stable microbial community structure in a functionally stable pilot-scale wastewater treatment plant, bacterial communities in the system were monitored over a one-year period. Bacterial community dynamics was characterized by the terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes. During the study period, the effluent BOD concentrations were very stable, with the average BOD concentration below 10 mg/L. The effluent TN concentrations were always below 20 mg/L, except for the first 40 days. T-RFLP results showed that, during the test period, the bacterial community structures were not stable, with an average change rate (every 15 days) of 20.4% ± 11.2%. Based on Lorenz distribution curves, it was observed that 20% of the species corresponded with 40-77% of cumulative relative abundances. Results clearly revealed that, in the pilot-scale wastewater treatment plant, functional stability did not correlate with stable bacterial communities.  相似文献   

2.
This paper describes the activity period of an experimental hybrid wetland system placed in a cold climate region. The aim is to determine the efficiency of the system in reducing TSS, BOD5, COD and other pollutants. The constructed wetland consists of a fat-removal unit and a basin for the storage and the distribution of the wastewater which precedes three phytoremediation beds: the first two are parallel and they work as submerged vertical flow wetland with gravel medium for an area of 180 m2; the last is a submerged horizontal flow wetland with sand medium and an area of 360 m2. The CW was designed to process a total estimated BOD5 loading rate of about 24 g m−2 d−1, which was less than half of the average actual loading rate. The wastewater treatment did not meet the required Italian law outflow limits, most likely due to BOD5 overloading.  相似文献   

3.
In order to investigate the effect of temperature, hydraulic residence time (HRT), vegetation type, substrate material and wetland shape on the performance of free-water surface (FWS) constructed wetlands treating wastewater, 5 pilot-scale units were constructed and operated continuously from December 2004 until March 2007 in parallel experiments. Four of the units (A, B, C, D) were rectangular in plan view with dimensions 3.40 m in length and 0.85 m in width, and contained substrate material at a thickness of 0.45 m. The fifth unit (E) had a trapezoidal plan view shape, with a width at the inlet of 1.15 m and at the outlet of 0.55 m, while the length and the thickness of the substrate were the same as in the other four. All units operated at a water depth of 0.10 m. Units B–E contained clay substrate and unit A contained sand. The four units with clay were planted as follows: two with cattails (B and E), one with common reeds (C), and one with giant reeds (D). Unit A, containing sand, was planted with cattails. Planting and substrate material combinations were appropriate for comparison of the effect of vegetation and material type on the function of the system. Synthetic wastewater was introduced in the units. During the operation period four HRTs (i.e., 6 days, 8 days, 14 days and 20 days) were used, while wastewater temperatures varied from about 0.0 °C to 29.1 °C. The removal performance of the five constructed wetland units was good, since it reached on the average 77.5%, 67.9%, 60.4%, 53.9%, 56.0% and 51.7% for BOD, COD, TKN, ammonia (NH4-N), ortho-phosphate (PO4-P) and total phosphorus (TP), respectively. BOD and phosphorus removal efficiencies showed dependence on temperature in most units. The 14-day HRT was found adequate for acceptable removal of organic matter, nitrogen and phosphorus for most temperatures. A 20-day HRT is recommended for acceptable removal of BOD and PO4-P in the cold season. The unit with the trapezoidal plan view shape showed the best performance, with mean removals of 80.1%, 73.5%, 70.4%, 68.6%, 64.7% and 63.5% for BOD, COD, TKN, NH4-N, PO4-P and TP, respectively. The cattail was found statistically more efficient than the other two plants in COD and PO4-P removal. The unit that contained the clay substrate was found statistically more efficient in phosphorus removal than the unit containing sand. HSF CW units were found more efficient than FWS units in removal of most pollutant.  相似文献   

4.
Nozzle-cavitation treatment was used to reduce excess sludge production in a dairy wastewater treatment plant. During the 450-d pilot-scale membrane bioreactor (MBR) operation, when 300 l of the sludge mixed liquor (1/10 of the MBR volume) was disintegrated per day by the nozzle-cavitation treatment with the addition of sodium hydrate (final concentration: 0.01% W/W) and returned to the MBR, the amount of excess sludge produced was reduced by 80% compared with that when sludge was not disintegrated.  相似文献   

5.
《Ecological Engineering》2007,29(2):173-191
In order to investigate the effect of temperature, hydraulic residence time (HRT), vegetation type and porous media material and grain size on the performance of horizontal subsurface flow (HSF) constructed wetlands treating wastewater, five pilot-scale units of dimensions 3 m in length and 0.75 m in width were operated continuously from January 2004 until January 2006 in parallel experiments. Three units contained medium gravel obtained from a quarry. The other two contained one fine gravel and one cobbles, both obtained from a river bed. The three units with medium gravel were planted one with common reeds and one with cattails, and one was kept unplanted. The other two units were planted with common reeds. Planting and porous media combinations were appropriate for comparison of the effect of vegetation and media type on the function of the system. Synthetic wastewater was introduced in the units. During the operation period, four HRTs (i.e., 6, 8, 14 and 20 days) were used, while wastewater temperatures varied from about 2.0 to 26.0 °C. The removal performance of the constructed wetland units was very good, since it reached on an average 89, 65 and 60% for BOD, TKN and ortho-phosphate (P-PO43−), respectively. All pollutant removal efficiencies showed dependence on temperature. It seems that the 8-day HRT was adequate for acceptable removal of organic matter, TKN and P-PO43− for temperatures above 15 °C. Furthermore, based on statistical testing, cattails, finer media and media obtained from a river showed higher removal efficiencies of TKN and P-PO43−.  相似文献   

6.
In Catalonia (Spain), a variety of different systems have been built to naturally treat liquid residues from small communities. Some of these wastewater treatment plants (WWTPs) include constructed wetlands with horizontal subsurface flow (HSSF) as secondary treatment. The present study described and characterized the performance of 11 WWTPs with secondary HSSF constructed wetland systems after an initial operating period of 8 years. The effluent concentrations of Biochemical Oxygen Demand (BOD5), Total Suspended Solids (TSS), Total Nitrogen (TN) and Total Phosphorous (TP) were statistically analyzed, and removal efficiencies for all WWTPs including all stages in treatment were calculated. The accumulated probability functions of those parameters were evaluated to determine the influence of two different types of polishing units on the overall performance: (a) only lagoon systems and (b) lagoon systems with HSSF. The statistical analysis indicates good performance for BOD5 and TSS. In the first case, mean concentrations below 25 mg/L were found in 9 of the 11 plants analyzed and removal efficiencies between 78 and 96% were observed. In the second case, mean concentrations below 35 mg/L were found in 8 of the 11 plants, and removal efficiencies were between 65 and 88%. For the nutrients, the removal efficiency for TN and TP were in the range of 48-66% and 39-58%, respectively. Additionally, the analysis of the influence of the polishing units did not show a significant improvement (α > 0.05) for any parameter in the wetland systems without a subsequent polishing unit. However, in the wetland systems with a polishing unit of HSSF, a significant improvement (α < 0.05) was found for the effluent's BOD5, TN and TP concentrations but with no significant contribution in TSS management.  相似文献   

7.
There has been significant global growth in the use of constructed wetlands for wastewater treatment. The fundamental microbial processes involved in the biodegradation of organic wastewater pollutants determine the range of design and operational parameters relevant to individual constructed wetlands. In this study, the biodegradation and mineralization of ethanol by acclimated and non-acclimated microbial populations in pilot-scale constructed wetlands were compared. By increasing the pollutant concentration at incremental intervals (incremental priming), the biodegradative capacity of a sand-filled constructed wetland was significantly enhanced. At an influent COD concentration of 15,800 mg L−1, no volatile fatty acids were detected in the effluent of an incrementally primed system and the maximum effluent COD concentration was 180 mg L−1. In contrast, an identical, unprimed system, amended with a lower concentration of COD (7587 mg L−1), exhibited a maximum effluent COD concentration of 1400 mg L−1, with the anaerobic metabolites, butyrate and propionate accounting for up to 83% of the effluent COD. It was demonstrated that the use of incremental priming, together with a vertical subsurface flow mode of operation enhanced long-term function of constructed wetlands. Future research should focus on determining the concentration gradients and incremental intervals necessary for optimal microbial acclimation to a range of organic pollutants and/or wastewaters, in order to minimize start-up times without significantly impairing the benefits derived from incremental priming.  相似文献   

8.
Ni SQ  Gao BY  Wang CC  Lin JG  Sung S 《Bioresource technology》2011,102(3):2448-2454
The possibility to introduce the exotic anammox sludge to seed the pilot-scale anammox granular reactor and its fast start-up for treating high nitrogen concentration wastewater were evaluated in this study. The reactor was started up successfully in two weeks; in addition, high nitrogen removal was achieved for a long period. Stoichiometry molar ratios of nitrite conversion and nitrate production to ammonium conversion were calculated to be 1.26 ± 0.02:1 and 0.26 ± 0.01:1, respectively. The Stover-Kincannon model which was first applied in granular anammox process indicated that the granular anammox reactor possessed high nitrogen removal potential of 27.8 kg/m3/d. The anammox granules in the reactor were characterized via microscope observation and fluorescence in situ hybridization technique. Moreover, the microbial community of the granules was quantified to be composed of 91.4-92.4% anammox bacteria by real-time polymerase chain reaction. This pilot study can elucidate further information for industrial granular anammox application.  相似文献   

9.
A laboratory-scale hybrid-denitrification filter (HDF) was designed by combining a plant material digester and a denitrification filter into a single unit for the removal of nitrate and phosphorus from glasshouse hydroponic wastewater. The carbon to nitrate (C:N) ratio for efficient operation of the HDF was calculated to be 1.93:1 and the COD/BOD5 ratio was 1.2:1. When the HDF was continuously operated with the plant material replaced every 2 days and 100% internal recirculation of the effluent, a high level of nitrate removal (320–5 mg N/L, >95% removal) combined with a low effluent sBOD5 concentration (<5 mg/L) was consistently achieved. Moreover, phosphate concentrations in the effluent were maintained below 7.5 mg P/L (>81% reduction). This study demonstrates the potential to combine a digester and a denitrification filter in a single unit to efficiently remove nitrate and phosphate from hydroponic wastewater in a single unit.  相似文献   

10.

Aims

We hypothesized that oral l-glutamine supplementations could attenuate muscle damage and oxidative stress, mediated by glutathione (GSH) in high-intensity aerobic exercise by increasing the 70-kDa heat shock proteins (HSP70) and heat shock factor 1 (HSF1).

Main methods

Adult male Wistar rats were 8-week trained (60-min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were supplemented with either l-alanyl-l-glutamine dipeptide (1.5 g/kg, DIP) or a solution containing the amino acids l-glutamine (1 g/kg) and l-alanine (0.67 g/kg) in their free form (GLN + ALA) or water (controls).

Key findings

Plasma from both DIP- and GLN + ALA-treated animals showed higher l-glutamine concentrations and reduced ammonium, malondialdehyde, myoglobin and creatine kinase activity. In the soleus and gastrocnemius muscle of both supplemented groups, l-glutamine and GSH contents were increased and GSH disulfide (GSSG) to GSH ratio was attenuated (p < 0.001). In the soleus muscle, cytosolic and nuclear HSP70 and HSF1 were increased by DIP supplementation. GLN + ALA group exhibited higher HSP70 (only in the nucleus) and HSF1 (cytosol and nucleus). In the gastrocnemius muscle, both supplementations were able to increase cytosolic HSP70 and cytosolic and nuclear HSF1.

Significance

In trained rats, oral supplementation with DIP or GLN + ALA solution increased the expression of muscle HSP70, favored muscle l-glutamine/GSH status and improved redox defenses, which attenuate markers of muscle damage, thus improving the beneficial effects of high-intensity exercise training.  相似文献   

11.
Pilot-scale constructed wetlands (CW) were constructed and operated to treat pre-treated olive mill wastewater. Pilot-scale units comprising three identical series with four pilot-scale vertical flow CWs were operated for one harvest season in a Greek olive mill plant. The pilot-scale CWs were filled with various porous media (i.e., cobble, gravel, and sand) of different gradations. Two series of pilot-scale units were planted with common reeds and the third (control) was unplanted. Mean influent concentrations were 14,120 mg/L, 2841 mg/L, 95 mg/L, 123 mg/L and 506 mg/L for COD, phenols, ortho-phosphate, ammonia and TKN, respectively. Despite the rather high influent concentrations, the performance of the CW units was very effective since it achieved removals of about 70%, 70%, 75% and 87% for COD, phenols, TKN and ortho-phosphate, respectively. COD, phenol and TKN removal seems to be significantly higher in the planted series, while ortho-phosphate removal shows no significant differences among the three series. Temperature and pollutant surface load seem to affect the removal efficiency of all pollutants. Compared to previous studies, pollutant surface loads applied here were higher (by one or two orders of magnitude). Even though high removal efficiencies were achieved, effluent pollutant concentrations remained high, thus preventing their use for irrigation or immediate disposal into the environment.  相似文献   

12.
Ryu HW  Cho KS  Lee TH 《Bioresource technology》2011,102(7):4654-4660
The performance of a pilot-scale anti-clogging biofilter system (ABS) was evaluated over a period of 125 days for treating ammonia and volatile organic compounds emitted from a full-scale food waste-composting facility. The pilot-scale ABS was designed to intermittently and automatically remove excess biomass using an agitator. When the pressure drop in the polyurethane filter bed was increased to a set point (50 mm H2O m−1), due to excess biomass acclimation, the agitator automatically worked by the differential pressure switch, without biofilter shutdown. A high removal efficiency (97-99%) was stably maintained for the 125 days after an acclimation period of 1 week, even thought the inlet gas concentrations fluctuated from 0.16 to 0.55 g m−3. Due the intermittent automatic agitation of the filter bed, the biomass concentration and pressure drop in the biofilter were maintained within the ranges of 1.1-2.0 g-DCW g PU−1 and below 50 mm H2O m−1, respectively.  相似文献   

13.
Performance of a wastewater treatment system utilizing a sulfur-redox reaction of microbes was investigated using a pilot-scale reactor that was fed with actual sewage. The system consisted of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with a recirculation line. Consequently, the total CODCr (465 ± 147 mg L−1; total BOD of 207 ± 68 mg L−1) at the influent was reduced (70 ± 14 mg L−1; total BOD of 9 ± 2 mg L−1) at the DHS effluent under the conditions of an overall hydraulic retention time of 12 h, a recirculation ratio of 2, and a low-sewage temperature of 7.0 ± 2.8 °C. A microbial analysis revealed that sulfate-reducing bacteria contributed to the degradation of organic matter in the UASB reactor even in low temperatures. The utilized sulfur-redox reaction is applicable for low-strength wastewater treatment under low-temperature conditions.  相似文献   

14.
Estimation of nitrogen dynamics in a vertical-flow constructed wetland   总被引:2,自引:0,他引:2  
The vertical-flow constructed wetland (VFCW) is a promising engineering technique for removal of excess nutrients and certain pollutants from wastewater and stormwater. The aim of this study was to develop a model using the STELLA software for estimating nitrogen (N) dynamics in an artificial VFCW (i.e., a substrate column with six zones) associated with a growing Cyperus alternifolius species under a wetting (wastewater) -to-drying ratio of 1:3. The model was calibrated by our experimental data with a reasonable agreement prior to its applications. Simulations showed that rates of NH4+-N and NO3-N leaching decreased with increasing zone number (or column depth), although such a decrease was much more profound for NH4+-N. Our simulations further revealed that rate of NH4+-N leaching decreased with time within each zone, whereas rate of NO3-N leaching increased with time within each zone. Additionally, both the rates of NH4+-N and NO3-N leaching through zones followed the water flow pattern: breakthrough during wetting period and cessation during drying period. In general, the cumulative amounts of total nitrogen (TN) were in the following order: leaching > denitrification > uptake > settlement. About 54% of the TN from the wastewater flowed out of the VFCW system, 18% of TN lost due to denitrification, 6% of TN was taken up by roots of a single plant (one hill), and the rest of 22% TN from the wastewater was removed from other mechanisms, such as volatilization, adsorption, and deposition. This study suggested that to improve the overall performance of a VFCW for N removal, prevention of N leaching loss was one of the major issues.  相似文献   

15.
Nitrogen removal and transformations were studied in two pilot-scale combinations of a special configuration of a subsurface wastewater infiltration system with vertical flow named symbiotic treatment®. Both pilot-scale combinations operated in parallel and each one consists of four stages in series, one of them with a vertical distribution of stages and the other one with a horizontal distribution. The main differences between them were the separation between stages (presence (the horizontal distribution)/absence (the vertical distribution) of filtration between steps), the hydraulic load (0.113 m3/m2 h and 0.082 m3/m2 h for the horizontal and the vertical distribution, respectively) and the depth of the soil filters (1 m each stage in the horizontal distribution whereas the depths in the vertical distribution ranges from 20 cm to 40 cm). Results of both configurations showed elevated dissolved oxygen concentration, and high removal of organic matter and total suspended solids (with mean removal values of 96% for COD for both plants and 90% and 98% for TSS for the vertical and the horizontal distribution, respectively). High total Kjeldahl nitrogen removals were obtained in both configurations (mean removals of 70% and 90% for the vertical and the horizontal distribution, respectively). Whereas the nitrification potential was higher in the configuration with horizontal distribution which includes pumping and filtering between stages and higher depth of the soil filters, both tested configurations showed promise for nitrification of wastewater, ammonia nitrogen was efficiently transformed to nitrate.  相似文献   

16.
17.
Constructed wetlands (CWs) are considered to be important sources of nitrous oxide (N2O). In order to investigate the effect of influent COD/N ratio on N2O emission and control excess emission from nitrogen removal, free water surface microcosm wetlands were used and fed with different influent. In addition, the transformation of nitrogen was examined for better understanding of the mechanism of N2O production under different operating COD/N ratios. It was found that N2O emission and the performance of microcosm wetlands were significantly affected by COD/N ratio of wastewater influent. Strong relationships exist between N2O production rate and nitrite (r = 0.421, p < 0.01). During denitrification process, DO concentration crucially influences N2O production rate. An optimal influent COD/N ratio was obtained by adjusting external carbon sources for most effective N2O emission control and best performance of the CWs in nitrogen removal from wastewater. It is concluded that under the operating condition of COD/N ratio = 5, total N2O emission is minimum and the microcosm wetland is most effective in wastewater nitrogen removal.  相似文献   

18.
The presence of estrone (E1), 17 beta-estradiol (E2) and 17 alpha-ethynylestradiol (EE2) in sewage treatment work (STW) effluent pose a potential risk to aquatic ecosystem. The objectives of this study were to evaluate the effectiveness of vertical-flow wetland as polishing step of conventional wastewater treatment in the removal of estrogens and to examine the effect of sand depth. The highest removal efficiency of 67.8 ± 28.0%, 84.0 ± 15.4% and 75.3 ± 17.6% for E1, E2 and EE2, respectively, was achieved by the shallowest wetland among three constructed wetlands with different filter layer depth (i.e. 7.5, 30 and 60 cm). Together with the result that the performance of wetlands when operating in unsaturated condition was superior to that when operating in water-saturated condition, it is suggested that maintaining sufficient aerobic circumstance in constructed wetlands was important for estrogens removal. Core sampling indicated that the highest efficiency achieved in extremely shallow wetland might be due partly to the highest root density, besides the superior condition for penetration of oxygen. The adsorbed estrogens in sand accounted for less than 12% of the removed estrogens irrespective of the depth, indicating biotic processes play a major role in the estrogens removal.  相似文献   

19.
Flooding has been described as one of the primary factors affecting arbuscular mycorrhizal (AM) colonization in wetlands. We investigated the effect of water-level fluctuations on AM colonization of Typha latifolia L. using an experimental wetland in southeastern Idaho, USA that received intermittent flows. Unlike previous research that has examined the effect of flooding on AM fungi using topographic gradients, we replicated flooding in time by sampling across multiple flooding events. AM colonization of T. latifolia occurred during flooded and unflooded periods, but was markedly reduced at drawdown. Both hyphal (R = 0.74, P = 0.015) and arbuscular (R = 0.67, P = 0.033) colonization were positively correlated with the length of the unflooded period. Taken together, the length of the unflooded period and soil moisture explained 83% of the variation in mean hyphal colonization (R2 = 0.83, P = 0.001). Overall, the results of this investigation show that drawdown represents a period of reduced AM colonization in T. latifolia.  相似文献   

20.
The performance and temporal variation of four hybrid, intermittent loading, pilot-scale vertical flow constructed wetlands (VFCWs) were tested for treating domestic wastewater of three different C/N ratios (2.5:1, 5:1, and 10:1, respectively). Two hybrid systems each consisted of the two identical VFCWs in-series, with up-up or down-down flow. The other two hybrid systems consisted of the first VFCWs (up or down flow) followed by a second VFCWs (down or up flow, respectively). The effects of combination mode, season, load level, and interactions on nutrient removal were studied in synthetic wastewater in the two-stage VFCW systems. With varying C/N ratios for influent water (from 2.5:1, 5:1 to 10:1) average removal efficiencies for the two-bed two-stage systems were as follows: COD 73-93%, TN 46-87%, TP 75-90%, and TOC 40-66%, respectively. All two-bed hybrid VFCWs were efficient in removing organics and total phosphorus, and reached the highest removal rates when the C/N ratios were 10 and 5, respectively. The hybrid systems for different flow direction beds had significantly higher performance (P < 0.05) during the wetlands operational period. Compared to the four types of hybrid VFCWs, the two-stage combination with different flow directions achieved significantly higher TN and TOC reductions (P < 0.05). The highest total nitrogen (P < 0.05) and total phosphorus reductions in down-up flow VFCWs were observed at C/N 5:1. However, for organic matter and total organic carbon, the highest COD and TOC removal rates occurred when C/N ratios were 5-10 for the down-up flow VFCWs. With appropriate control of combined mechanisms in series, the concentrations of carbon and nitrogen sources in the influent can achieve the optimal effects of nutrient removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号