首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenol is a commonly found organic pollutant in industrial wastewaters. Its ecotoxicological significance is well known and, therefore, the compound is often required to be removed prior to discharge. In this study, plant-bacterial synergism was established in floating treatment wetlands (FTWs) in an attempt to maximize the removal of phenol from contaminated water. A common wetland plant, Typha domingensis, was vegetated on a floating mat and augmented with three phenol-degrading bacterial strains, Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, to develop FTWs for the remediation of water contaminated with phenol. All of the strains are known to have phenol-reducing properties, and grow well in FTWs. Results showed that T. domingensis was able to remove a small amount of phenol from the contaminated water; however, bacterial augmentation enhanced the removal potential significantly, i.e., 0.146 g/m2/day vs. 0.166 g/m2/day, respectively. Plant biomass also increased in the presence of bacterial consortia; and inoculated bacteria displayed successful colonization/survival in the rhizosphere, root interior and shoot interior of the plant. Similarly, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and total organic carbon (TOC) was achieved by the combined application of plants and bacteria. The study demonstrates that the plant-bacterial synergism in a FTW may be a more effective approach for the remediation of phenol-contaminated water.  相似文献   

2.
Oxygen transfer capacity and removal of ammonium and organic matter were investigated in this study to evaluate the performance of a lab-scale tidal flow constructed wetland. Average oxygen supply under tidal operation (350 g m−2 d−1) was much higher than in conventional constructed wetlands (<100 g m−2 d−1), resulting in enhanced removal of BOD5 and NH4+. Theoretical oxygen demand from BOD5 removal and nitrification was approximately matched by the measured oxygen supply, which indicated aerobic consumption of BOD5 and NH4+ under tidal operation. When BOD5 removal increased from 148 g m−2 d−1 to 294 g m−2 d−1, neither exhausted oxygen from the aggregate matrix during feeding period (111 g m−2 d−1) nor effluent dissolved oxygen (DO) concentration (2.8 mg/L) changed significantly, demonstrating that the oxygen transfer potential of the treatment system had not been exceeded. However, even though DO had not been exhausted, inhibition of nitrification was observed under high BOD loading. The loss of nitrification was attributed to excessive heterotrophic biofilm growth believed to induce oxygen transfer limitations or oxygen competition in thickened biofilms.  相似文献   

3.
4.
Lab scale constructed wetlands were used to evaluate organic load removal efficiency. Bioreactors were fed with synthetic wastewater (SW) with varying concentrations of nitrogen and potassium. Reactors were planted with species Phragmites australis. Fed theoretic COD was adjusted to 240.0 mg-O2 L−1, nitrogen levels were 10 and 40 mg-N L−1 (ammonium sulfate), potassium levels were 5 and 31 mg-K L−1 (potassium monobasic phosphate). The higher biomass yield, for 0.5 and 0.775 N:K ratios, was related with higher organic load removal. The ratio N:K showed significant differences for organic load abatement, when 1:0.5 and 1:0.775 N:K ratios were applied, 96.8% efficiency was obtained, whereas N:K ratio of 1:0.125 had efficiency of 92.1% and N:K ratio of 1:3.1 showed an efficiency of 90.5%. For planted bioreactor EH decreased in 162.7 mV from sample port to 5 cm down to 35 cm depth, while for the bioreactor without plant showed an EH decrement of only 17.7 mV.  相似文献   

5.
How do macrophyte distribution patterns affect hydraulic resistances?   总被引:1,自引:0,他引:1  
In eutrophic river systems, macrophytes attain high biomass with reduced drainage and increased flooding risk. To avoid these problems, water managers remove vegetation. Total removal, however, increases wash out of macro-invertebrate communities reducing the ecological value of rivers. Partial vegetation removal reduces this washout and prevents an increase in hydraulic resistance. In this, study the hydraulic performance of three partial vegetation removal patterns was tested. From the results it was seen that hydraulic resistance, expressed as Manning's n, was varying between 0.025 m−1/3 s and 0.050 m−1/3 s. Compared with the empty situation, the different distribution patterns increased resistance between 14 and 23%. Hydraulic resistance of these patterns was also significantly influenced by the species present in the vegetation patches. Three groups of macrophyte plants (emerged, floating leaved and submerged) with significantly different hydraulic resistances were determined. The emerged species Sparganium erectum generated the least resistance with an average friction of 0.03 m−1/3 s. Stuckenia pectinata and Potamogeton natans had slightly higher friction values around 0.4 m−1/3 s. Ranunculus penicillatus and Callitriche platycarpa had average friction values around 0.05 m−1/3 s.The proposed vegetation removal patterns are good alternatives to create a management system, which minimally increases hydraulic resistance but still guarantees the ecological functions.  相似文献   

6.
Methane emissions from freshwater riverine wetlands   总被引:1,自引:0,他引:1  
To better understand methane emissions from freshwater riverine wetlands, seasonal and spatial patterns of methane emissions were measured over a 1-year period from created freshwater marshes and a river division oxbow, and at a river-floodplain edge (riverside) in central Ohio, USA. Plots were distributed from inflow to outflow and from shallow transition edges to deep water zones in the marshes and oxbow. Median values of CH4 emissions ranged from 0.33 to 85.7 mg-CH4-C m−2 h−1, at the riverside sites and 0.02-20.5 mg CH4-C m−2 h−1 in the created marshes. The naturally colonizing marsh had more methane emissions (p = 0.047) than did the planted marsh, probably due to a history of higher net primary productivity in the former. A significant dry period and lower productivity in the oxbow may explain its low range of methane emissions of −0.04 to 0.09 mg CH4-C m−2 h−1. There were significantly higher rates of methane emissions in deep water zones compared to transition zones in the created marshes. Overall CH4 emissions had significant relationships with organic carbon and soil temperature and appear to depend on the hydroperiod and vegetation development. Riparian wetlands can be designed to minimize greenhouse gas emissions while providing other ecosystem services.  相似文献   

7.
This study aimed to evaluate the contaminant removal efficiency of shallow horizontal subsurface flow treatment wetlands (SSF TWs) as a function of (1) primary treatment (hydrolytic upflow sludge blanket (HUSB) reactor vs. conventional settling) and (2) operation strategy (alternation of saturated/unsaturated phases vs. permanently saturated). An experimental plant was constructed, operated and surveyed for the main water quality parameters over a period of 2.5 years. The plant had 3 treatment lines: a control line (settler-wetland permanently saturated), a batch line (settler-wetland operated with saturated/unsaturated phases) and an anaerobic line (HUSB reactor-wetland permanently saturated). In each line wetlands had a surface area of 2.80 m2, a water depth of 25 cm and a granular medium D60 = 7.3 mm, and were planted with common reed. During the study period the wetlands were operated at a hydraulic and organic load of 28.5 mm/d and about 4.7 g BOD/m2 d, respectively. Effluent average redox potential was lower for the anaerobic line (−45 ± 78 mV) than for the other two lines (3 ± 92.7 and −5 ± 71 mV for control and batch, respectively). Overall, chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and ammonium mass removal efficiencies were slightly greater for the batch line (88%, 96% and 87%, respectively) than for the control line (83%, 94% and 80%) and the anaerobic line (80%, 87% and 73%). During cold seasons, COD and ammonium removal in the batch line was around 30% and 50% higher than in the control line, respectively. The results of this study indicate that the implementation of a HUSB reactor as primary treatment did not enhance the treatment capacity of the system (in comparison with a conventional settler). The efficiency of treatment wetland systems with horizontal subsurface flow can be improved using a batch operation strategy.  相似文献   

8.
Denitrification beds are a simple approach for removing nitrate (NO3) from a range of point sources prior to discharge into receiving waters. These beds are large containers filled with woodchips that act as an energy source for microorganisms to convert NO3 to nitrogen (N) gases (N2O, N2) through denitrification. This study investigated the biological mechanism of NO3 removal, its controlling factors and its adverse effects in a large denitrification bed (176 m × 5 m × 1.5 m) receiving effluent with a high NO3 concentration (>100 g N m−3) from a hydroponic glasshouse (Karaka, Auckland, New Zealand). Samples of woodchips and water were collected from 12 sites along the bed every two months for one year, along with measurements of gas fluxes from the bed surface. Denitrifying enzyme activity (DEA), factors limiting denitrification (availability of carbon, dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, pH, and concentrations of NO3, nitrite (NO2) and sulfide (S2−)), greenhouse gas (GHG) production - as nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) - and carbon (C) loss were determined. NO3-N concentration declined along the bed with total NO3-N removal rates of 10.1 kg N d−1 for the whole bed or 7.6 g N m−3 d−1. NO3-N removal rates increased with temperature (Q10 = 2.0). In laboratory incubations, denitrification was always limited by C availability rather than by NO3. DO levels were above 0.5 mg L−1 at the inlet but did not limit NO3-N removal. pH increased steadily from about 6 to 7 along the length of the bed. Dissolved inorganic carbon (C-CO2) increased in average about 27.8 mg L−1, whereas DOC decreased slightly by about 0.2 mg L−1 along the length of the bed. The bed surface emitted on average 78.58 μg m−2 min−1 N2O-N (reflecting 1% of the removed NO3-N), 0.238 μg m−2 min−1 CH4 and 12.6 mg m−2 min−1 CO2. Dissolved N2O-N increased along the length of the bed and the bed released on average 362 g dissolved N2O-N per day coupled with N2O emission at the surface about 4.3% of the removed NO3-N as N2O. Mechanisms to reduce the production of this GHG need to be investigated if denitrification beds are commonly used. Dissolved CH4 concentrations showed no trends along the length of the bed, ranging from 5.28 μg L−1 to 34.24 μg L−1. Sulfate (SO42−) concentrations declined along the length of the bed on three of six samplings; however, declines in SO42− did not appear to be due to SO42− reduction because S2− concentrations were generally undetectable. Ammonium (NH4+) (range: <0.0007 mg L−1 to 2.12 mg L−1) and NO2 concentrations (range: 0.0018 mg L−1 to 0.95 mg L−1) were always very low suggesting that anammox was an unlikely mechanism for NO3 removal in the bed. C longevity was calculated from surface emission rates of CO2 and release of dissolved carbon (DC) and suggested that there would be ample C available to support denitrification for up to 39 years.This study showed that denitrification beds can be an efficient tool for reducing high NO3 concentrations in effluents but did produce some GHGs. Over the course of a year NO3 removal rates were always limited by C and temperature and not by NO3 or DO concentration.  相似文献   

9.
A pilot plant involving a nitritation-anammox process was operated for treating digester supernatant. In the preceding nitritation process, ammonium-oxidizing bacteria were immobilized in gel carriers, and the growth of nitrite-oxidizing bacteria was suppressed by heat-shock treatment. For the following anammox process, in order to maintain the anammox biomass in the reactor, a novel process using anammox bacteria entrapped in gel carriers was also developed. The nitritation performance was stable, and the average nitrogen loading and nitritation rates were 3.0 and 1.7 kg N m−3 d−1, respectively. In the nitritation process, nitrate production was completely suppressed. For the anammox process, the startup time was about two months. Stable nitrogen removal was achieved, and an average nitrogen conversion rate of 5.0 kg N m−3 d−1 was obtained. Since the anammox bacteria were entrapped in gel carriers, stable nitrogen removal performance was attained even at an influent suspended solids concentration of 1500 mg L−1.  相似文献   

10.
Three mesocosm wetlands (250 cm × 100 cm × 100 cm) with different wetland plants (Calamgrostis angustifolia, CA, Carex lasiocarpa, CL, and C. angustifolia/C. lasiocarpa mixture, AL, respectively) and hydrologic regimes were set to test migration and retention of exogenous dissolved iron ((NH4)2Fe(SO4)2of 40 mg Fe(II) L−1) in the Sanjiang Plain Wetland in northeast China. The experiment was designed as two stages: open migration period (OMP) for 1.5 d and close retention period (CRP) for 28.5 d. Based on the outflow Fe(II) concentration during the OMP, retention efficiencies (RE) and iron retention fluxes adjusted by area (RFad) in the three mesocosm wetlands were calculated, and the migration of iron were modeled using the first-order kinetic model. Outflow pH decreased gradually from a weak alkaline condition to a weak acid condition during the OMP, and then increased during the CRP, while outflow Eh and DO decreased during the experiment. The three mesocosm wetlands had considerable RE ranging from 75% to 98%, with the averaged RFad of 4.31 ± 0.17, 4.20 ± 0.16, and 4.37 ± 0.13 g m−2 h−1 for CA, CL, and AL, respectively. The reduction conditions in the mesocosm wetlands developed after 4 d or 12 d and the former retained iron during the OMP became mobile and discharged primarily in the form of Fe(III). The first-order kinetic model could simulate the outflow concentration of dissolved iron during the OMP (R2 = 0.91, 0.69, and 0.68 for CA, CL, and AL, respectively), while the outflow dissolved iron during the CMP was difficult to model because the changed pH and Eh conditions in the mesocosm wetlands cause the former precipitated iron to be mobile after several days.  相似文献   

11.
In this work, it has been studied the production of electricity and the oxidation of the pollutants contained in a synthetic wastewater fed with glucose and peptone of soybean as carbon sources, using a mediator-less microbial fuel cell (MFC). Special attention has been paid to the acclimation stage, in which it was found that with high hydraulic and solid retention times it is possible to obtain a very efficient process with a 90% COD removal and practically total conversion of COD into electricity (considering the typical stoichiometric yield of heterotrophic biomass). The influence of concentration sludge was studied working with three different amounts of suspended solids, from 120 to 14000 mg. The maximum power density increased exponentially with the concentration sludge from 2.1 mW m−2 to 11 mW m−2 at the highest concentration sludge. More over, the percentage of the influent COD used to produce electricity was higher than 100% when the highest sludge concentration was used. This was explained taking into account the endogenous metabolism of micro-organisms presented in the system.  相似文献   

12.
A bioreactor cascade with a submerged biofilm is proposed to treat young landfill leachate of jbel chakir landfill site south west from capital Tunis, Tunisia. The prototype was run under different organic loading charges varying from 0.6 to 16.3 kg TOC m−3 day−1. Without initial pH adjustment total organic carbon (TOC) removal rate varied between 65% and 97%. The total reduction of COD reached 92% at a hydraulic retention time of 36 h. However, the removal of total kjeldahl nitrogen for loading charges of 0.5 kg N m−3 day−1 reached 75%. The adjustment of pH to 7.5 improved nitrogen removal to a rate of 85% for loading charge of 1 kg N m−3 day−1. The main bacterial groups responsible for a simultaneous removal of organic carbon and nitrogen belonged to Bacillus, Actinomyces, Pseudomonas and Burkholderia genera. These selected isolates showed a great capacity of degradation at different leachate concentrations of total organic carbon.  相似文献   

13.
The influence of suspended mussel culture on the benthic-pelagic coupling was evaluated in the Ría de Vigo, in the coastal upwelling system of the NW Iberian Peninsula, during the month of July 2004. Measurements of water column properties were carried out at three stations in the Ría de Vigo: under a mussel raft (1), and at two reference sites in the main channel (2) and in the inner part (3) of the Ría. Dissolved nutrients, dissolved oxygen and inorganic carbon benthic fluxes were measured by means of a benthic chamber at stations 1 and 3. Sediment traps were deployed at 6 locations to estimate vertical fluxes. The water column structure at the three study stations was very similar, characterized by upwelling conditions during the second week of July and a posterior stratification showing a strong thermocline, with a depth fluctuation mainly modulated by the shelf wind regime. Vertical POC fluxes underneath the mussel raft (3 g C m2 d− 1) were 3 times higher than those obtained between rafts and 10 times higher than in the main channel reference site. Dissolved oxygen, ammonium, silicate and phosphate benthic fluxes were significantly higher under the raft than at the inner Ría reference site. A 1D carbon budget showed the importance of benthic metabolism under the raft (2.3 ± 0.8 g C m− 2 d− 1), being higher than the organic carbon produced at the photic layer (0.7 ± 0.3 g C m− 2 d− 1), as a result of higher organic loading compared to the inner Ría reference site. The results show for the first time the important role that suspended mussel cultures play in the benthic-pelagic coupling in this coastal upwelling ecosystem.  相似文献   

14.
The removal of toxic methyl ethyl ketone (MEK) is studied in a lab scale biofilter packed with mixture of coal and matured compost. The biofiltration operation is divided into 5 phases for a period of 60 days followed by shock loading conditions for three weeks. The maximum removal efficiency of 95% is achieved during phase II for an inlet concentration of 0.59 g m−3, and 82–91% for the inlet concentration in the range of 0.45–1.23 g m−3 of MEK during shock loads. The Michaelis–Menten kinetic constants obtained are 0.086 g m−3 h−1 and 0.577 g m−3. The obtained experimental results are validated using Ottengraf–van den Oever model for zero-order diffusion-controlled region to understand the mechanism of biofiltration. The critical inlet concentration of MEK, critical inlet load of MEK and biofilm thickness are estimated using the results obtained from model predictions.  相似文献   

15.
Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m−3 d−1 and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L−1 (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m−3 d−1 and HRT of 15.6 days produced effluent with nitrate concentration of ∼0.025 mg N L−1 (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.  相似文献   

16.
A Sporothrix variecibatus-inoculated biotrickling filter (BTF) was examined for styrene removal, without and with the addition of silicone oil, at different empty bed residence times. The highest elimination capacities (ECs) were 172.8 (without silicone oil) and 670 g m−3 h−1 (with silicone oil), respectively, corresponding to a 4-fold improvement in presence of oil. The addition of silicone oil formed a well-coalesced emulsion of fungi and silicone oil, resulting in filter-bed clogging. Clogging prevention strategies adopted were; (i) lowering the volume ratio of silicone oil from 10% to 2% (v/v), and (ii) periodic increase in trickling rate of the medium from 50 to 190 mL min−1. During shock-load experiments, the BTF with silicone oil (2% v/v) could withstand high styrene loads, of up to 1900 g m−3 h−1, when compared to the BTF without silicone oil (400 g m−3 h−1).  相似文献   

17.
The use of wetlands to remediate acid mine drainage has expanded rapidly since the realisation that acid coal mine drainage running into natural sphagnum wetlands undergoes an increase in pH and a precipitation of metals. However, our study suggests that the inclusion of plants in the acid mine drainage treatment system may be questionable, due to inefficiencies caused by exudation of dissolved organic carbon (DOC), and in particular its phenolic constituents. They complex with iron, causing increased solubility, the exact opposite of what is required to facilitate amelioration. The addition of minewater to planted wetland mesocosms initially caused a decline in Fe concentrations, typically from over 1100 to a low of 75 mg L−1. However, it increased higher than 300 mg L−1 after 15 days. The rise in iron occurred concurrently with DOC and phenolic increases; 15-69 and 5-15 mg L−1, respectively, for Eriophorum angustifolium. Removal of DOC by precipitation with calcium lowered the DOC abundance, but without a simultaneous decrease in iron concentration. The concentration of one fraction of the DOC, phenolic compounds, did not decline, and we propose that the Fe was complexed with that phenolic DOC pool. The proposal was confirmed by enzymic depletion of the phenolic compounds using phenol oxidase. Our findings suggest that phenolic complexation represents a potent constraint on wetland-based bioremediation of iron in acid mine drainage.  相似文献   

18.
Low-chlorinated benzenes (CBs) are widespread groundwater contaminants and often threaten to contaminate surface waters. Constructed wetlands (CWs) in river floodplains are a promising technology for protecting sensitive surface water bodies from the impact of CBs. The efficiency and seasonal variability of monochlorobenzene (MCB), 1,4-dichlorobenzene (1,4-DCB) and 1,2-dichlorobenzene (1,2-DCB) removal, the impact of planting, and gaseous MCB emissions from the filter surface were investigated over the course of 1 year in both a vegetated pilot-scale CW and an unplanted reference plot (UR). Annual mean concentration decreases of MCB and 1,4-DCB were observed; however, annual mean 1,2-DCB removal was seen only in the upper filter layer. Planting (Phragmites australis) had a statistically significant beneficial effect on removal. The CB removal efficiency in the CW generally decreased with depth, and seasonal variations of removal were evident, with less concentration decrease during summer. Load removal efficiencies of 59-65% (262-358 mg m−2 d−1) for MCB, 59-69% (4.0-5.1 mg m−2 d−1) for 1,4-DCB and 29-42% (0.6-2.1 mg m−2 d−1) for 1,2-DCB were observed in June and July. Volatilization of MCB from the filter surface accounted for 2-4% of the total amount removed. Simple cover layers of organic materials on the filter surface were suitable for MCB emission reduction. Model calculations were carried out to estimate the MCB removal potential attributable to microbial degradation, volatilisation, and plant uptake in the CW and UR. Microbial degradation was the dominating process. The observed positive impact of plants on MCB removal was caused by improved oxygen supply (due to root oxygen release into the rhizosphere and enhanced water table fluctuations), and direct plant uptake.  相似文献   

19.
Performance of two dual chambered mediator-less microbial fuel cells (MFCs) was evaluated at different sludge loading rate (SLR) and feed pH. Optimum performance in terms of organic matter removal and power production was obtained at the SLR of 0.75 kg COD kg VSS−1 d−1. Maximum power density of 158 mW/m2 and 600 mW/m2 was obtained in MFC-1 (feed pH 6.0) and MFC-2 (feed pH 8.0), respectively. Internal resistance of the cell decreased with increase in SLR. When operated only with biofilm on anode, the maximum power density was 109.5 mW/m2 in MFC-1 and 459 mW/m2 in MFC-2, which was, respectively, 30% and 23.5% less than the value obtained in MFC-1 and MFC-2 at SLR of 0.75 kg COD kg VSS−1 d−1. Maximum volumetric power of 15.51 W/m3 and 36.72 W/m3 was obtained in MFC-1 and MFC-2, respectively, when permanganate was added as catholyte. Higher feed pH (8.0) favoured higher power production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号