首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A column experiment with horizontal permeable barriers was conducted to investigate phytoextraction of heavy metals by Lolium perenne L. from municipal solid waste compost following EDTA application, as well as to study the effects of L. perenne and permeable barriers on preventing metal from leaching. In columns with barriers, EDTA addition yielded maximum concentrations of Cu, Zn and Pb of 155, 541 and 33.5 mg kg−1 in shoot, respectively. This led to 4.2, 2.1 and 7.4 times higher concentrations of Cu, Zn and Pb compared to treatment with no chelating agent, respectively. In treatments with 10 mmol kg−1 EDTA, the barriers reduced leaching of Cu, Zn and Pb by approximately three times, respectively, resulting in leaching of total initial Cu, Zn and Pb by 27.3%, 25.2% and 28.8%, respectively, after four times’ irrigation. These results indicate that L. perenne and permeable barriers are effective to reduce leaching of heavy metals and minimize the risk of contaminating groundwater in EDTA-enhanced phytoremediation. Thus these findings highlight that turfgrass and permeable barriers can effectively prevent metal leaching.  相似文献   

2.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

3.
A novel selenium-dependent glutathione peroxidase (Se-GPX) was cloned from abalone Haliotis discus hannai Ino (HdhGPx) by homology cloning with degenerate primers and RACE techniques. The full length of HdhGPx cDNA was 963 bp with a 669 bp open reading frame (ORF) encoding 222 amino acids and a 101 bp eukaryotic selenocysteine insertion sequence (SECIS) in 3′ untranslated region (UTR). It was showed that HdhGPx has a characteristic codon at 235TGA237 that corresponds to selenocysteine (SeC) as U72. Sequence characterization revealed that HdhGPx contains a characteristic GPx signature motif 2 (96LGLPCNQF103), an active site motif (179WNFEKF184). In addition, two potential N-glycosylation sites (112NGTE115 and 132NLTQ135) were identified in HdhGPx. 3D modeling analysis showed that the overall structure of HdhGPx monomer had more similarity to human GPx3 than human GPx1. Relatively higher-level mRNA expression was detected in hepatopancreas, mantle and gonad by real-time PCR assays. The relative expression levels of HdhGPx mRNA in hepatopancreas and haemocytes were detected by real-time PCR in abalone fed with nine different diets containing graded levels of selenium (0.15, 1.32 and 48.7 mg kg− 1), zinc (6.69, 33.85 and 710.63 mg kg− 1) and iron (29.17, 65.7 and 1267.2 mg kg− 1) for 20 weeks, respectively. The results showed that the expressions of HdhGPx mRNA were statistically higher at adequate dietary selenium (1.32 mg kg− 1), zinc (33.85 mg kg− 1) and iron (65.7 mg kg− 1) than those in low dietary minerals, respectively. But HdhGPx mRNA expression levels were down-regulated by high contents of dietary selenium (48.7 mg kg− 1), zinc (710.63 mg kg− 1) and iron (1267.2 mg kg− 1), respectively. These results indicated that adequate dietary minerals could increase the mRNA expression of HdhGPx, and then to increase the total antioxidant capacities in abalone.  相似文献   

4.
Lead accumulation by free and immobilized cyanobacteria, Lyngbya majuscula and Spirulina subsalsa was studied. Exponentially growing biomass was exposed to 1-20 mg L−1 of Pb(II) solution at pH 6, 7 and 8 for time periods ranging from 10 min to 48 h. L. majuscula accumulated 10 times more Pb (13.5 mg g−1) than S. subsalsa (1.32 mg g−1) at pH 6 within 3 h of exposure to 20 mg L−1 Pb(II) solution and 76% of the Pb could be recovered using 0.1 M EDTA. This chelator (2 μM) did not influence Pb accumulation whereas 100 μM citrate increased that of S. subsalsa 6- to 8-fold. L. majuscula filaments enmeshed in a glass wool packed in a column removed 95.8% of the Pb from a 5 mg L−1 Pb solution compared to free and dead biomass which removed 64 and 33.6% Pb respectively. A 92.5% recovery of accumulated Pb from the immobilized biomass suggests that repeated absorption-desorption is possible.  相似文献   

5.
Age-related intramuscular pharmacokinetics of cefquinome in sheep   总被引:2,自引:0,他引:2  
The pharmacokinetic profile of cefquinome was studied in one, six-months and one year old sheep following a single intramuscular doses of 1 and 10 mg kg−1 b.wt. Cefquinome concentrations in serum were determined by microbiological assay technique using Micrococcus luteus (ATCC 9341) as test organism. Following intramuscular administration of cefquinome, the absorption half-lives (t0.5(ab)) were 1.540, 1.037 and 0.664 h at a dose of 1 mg kg−1 b.wt. and 1.844, 1.290 and 1.605 h at a dose of 10 mg kg−1 b.wt. in the three ages, respectively. After the two doses, the maximum serum concentrations (Cmax) of 0.732, 1.145, 1.205 and 3.525, 5.088, 4.576 μg ml−1 were attained after (tmax) of 3.812, 3.029, 2.174 and 3.785, 2.824, 3.095 h in the three ages, respectively. The elimination half-life (t0.5(el)) and MRT values of cefquinome were longer in one-month old sheep compared to six-months old and yearling sheep. The absorption and elimination processes were delayed in newborn sheep of one-month old in contrary to six-month and yearling animals. The in vitro serum protein-binding tendencies were 8.254%, 11.586% and 13.002%, for one, six-months and one year old sheep, respectively. Based on this study and economically, an optimal intramuscular dosage regimen of cefquinome would be 1 mg kg−1 once daily in one-month, six-months and one-year old sheep to achieve and maintain the therapeutic serum levels within safe limits.  相似文献   

6.
Enhancement of Pb and Zn uptake by Indian mustard (Brassica juncea (L.) Czern.) and winter wheat (Triticum aestivumL.) grown for 50 days in pots of contaminated soil was studied with application of elemental sulphur (S) and EDTA. Sulphur was added to the soil at 5 rates (0–160 mmol kg?1) before planting, and EDTA was added in solution at 4 rates (0–8 mmol kg?1) after 40 days of plant growth. Additional pots were established with the same rates of S and EDTA but without plants to monitor soil pH and CaCl2-extractable heavy metals. The highest application rate of S acidified the soil from pH 7.1 to 6.0. Soil extractable Pb and Zn and shoot uptake of Pb and Zn increased as soil pH decreased. Both S and EDTA increased soil extractable Pb and Zn and shoot Pb and Zn uptake. EDTA was more effective than S in increasing soil extractable Pb and Zn, and the two amendments combined had a synergistic effect, raising extractable Pb to ¿1000 and Zn to ¿6 times their concentrations in unamended control soil. Wheat had higher shoot yields than Indian mustard and increasing application rates of both S and EDTA reduced the shoot dry matter yields of both plant species to as low as about half those of unamended controls. However, Indian mustard hyperaccumulated Pb in all EDTA treatments tested except the treatment with no S applied, and the maximum shoot Pb concentration was 7100 mg kg?1 under the highest application rates of S and EDTA combined. Wheat showed similar trends, but hyperaccumulation (1095 mg kg?1) occurred only at the highest rates of S and EDTA combined. Similar trends in shoot Zn were found, but with lower concentrations than Pb and far below hyperaccumulation, with maxima of 777 and 480 mg kg?1 in Indian mustard and wheat. Despite their lower yields, Indian mustard shoots extracted more Pb and Zn from the soil (up to 4.1 and 0.45 mg pot?1) than did winter wheat (up to 0.72 and 0.28 mg pot?1), indicating that the effects of S and EDTA on shoot metal concentration were more important than yield effects in determining rates of metal removal over the growth period of 50 days. Phytoextraction of Pb from this highly contaminated soil would require the growth of Indian mustard for nearly 100 years and is therefore impractical.  相似文献   

7.
This study investigated the effects of different doses of 17-β-estradiol (E2) in Rhamdia quelen. Groups of males exposed to different doses of E2 (0.1 mg kg 1, 1 mg kg 1 and 10 mg kg 1) were compared with non-exposed male and female fish groups. Among the considered biomarkers, no significant differences were observed for micronuclei test, reduced glutathione concentration and lipid peroxidation. All E2-treated individuals had decreased glutathione S-transferase activity. Increased catalase and superoxide dismutase activities, increased vitellogenin expression and decreased metallothionein concentration were observed in males treated with the highest dose. Liver of all test groups showed necrotic areas, but cytoplasm vacuolization was again found only in the individuals exposed to highest dose. E2 causes deleterious hepatic effects to R. quelen, and vitellogenin expression, catalase and superoxide dismutase activity and metallothionein concentration represent appropriate biomarkers for studying E2 effects. Additionally, the response of some biomarkers was similar in males exposed to E2 and unexposed females, and therefore exposure to endocrine disruptors may cause consequences for fish populations.  相似文献   

8.
The effects of lead (Pb; 0-1000 mg L−1) stress on the growth and biochemical responses of seedlings of Avicennia marina were examined, with and without cotyledons. After 50 days exposure to Pb, the growth of A. marina was not affected at low concentrations (0-50 mg L−1 Pb). Roots tolerated to high Pb concentrations, with a significant reduction in biomass only at 1000 mg L−1 Pb. In leaves and stems, 500 mg L−1 Pb already caused a significant decline in biomass (0.6-fold). Accumulation of Pb occurred mainly in roots, with some accumulation in cotyledons but very little in leaves. Pb concentrations in both roots and cotyledons were proportional to the Pb levels in the substrate (y = 25.945x − 4281, r2 = 0.67, P = 0.001 for roots, and y = 0.249x + 45.636, r2 = 0.879, P < 0.001 for leaves). In treatments with 500 and 1000 mg L−1 Pb, nitrogen concentrations in cotyledons were higher, while the carbon to nitrogen ratios were significantly lower than in the control without Pb. The Pb levels had significant positive effects on sugar content, MDA concentration and POD activity in both roots and leaves, while the removal of cotyledons significantly decreased the POD activity and MDA content in roots A. marina seedlings according to the two-way multivariate analysis of variance test. The sugar content in the cotyledon of Pb-treated seedlings was significantly lower than that in the control (without Pb), suggesting that more carbohydrate reserves (e.g., sugar) stored in cotyledons had been mobilized to leaves and even roots under Pb treatment.  相似文献   

9.
Silicate (Si) can enhance plant resistance or tolerance to the toxicity of heavy metals. However, it remains unclear whether Si can ameliorate lead (Pb) toxicity in banana (Musa xparadisiaca) roots. In this study, treatment with 800 mg kg−1 Pb decreased both the shoot and root weight of banana seedlings. The amendment of 800 mg kg−1 Si (sodium metasilicate, Na2SiO3·9H2O) to the Pb-contaminated soil enhanced banana biomass at two growth stages significantly. The amendment of 800 mg kg−1 Si significantly increased soil pH and decreased exchangeable Pb, thus reducing soil Pb availability, while Si addition of 100 mg kg−1 did not influence soil pH. Results from Pb fractionation analysis indicated that more Pb were in the form of carbonate and residual-bound fractions in the Si-amended Pb-contaminated soils. The ratio of Pb-bound carbonate to the total Pb tended to increase with increasing growth stages. Treatment with 100 mg kg−1 Si had smaller effects on Pb forms in the Si-amended soils than that of 800 mg kg−1 Si. Pb treatment decreased the xylem sap greatly, but the addition of Si at both levels increased xylem sap and reduced Pb concentration in xylem sap significantly in the Si-amended Pb treatments. The addition of Si increased the activities of POD, SOD, and CAT in banana roots by 14.2% to 72.1% in the Si-amended Pb treatments. The results suggested that Si-enhanced tolerance to Pb toxicity in banana seedlings was associated with Pb immobilization in the soils, the decrease of Pb transport from roots to shoots, and Si-mediated detoxification of Pb in the plants.  相似文献   

10.
A novel β-mannanase gene (CsMan5A) was cloned from Chaetomium sp. CQ31 and expressed in Pichia pastoris. It had an open reading frame of 1251 bp encoding 416 amino acids and contained two introns. The deduced amino acid sequence shared the highest similarity (73%) with the β-mannanase from Emericella nidulans and belongs to glycosyl hydrolase family 5. The recombinant β-mannanase (CsMan5A) was secreted at extremely high levels of 50,030 U mL−1 and 6.1 mg mL−1 in high cell density fermentor. The purified enzyme was optimally active at pH 5.0 and 65 °C and displayed broad pH stability (pH 5.0-11.0) and exhibited specificity towards locust bean gum (Km = 3.1 mg mL−1), guar gum (Km = 9.3 mg mL−1) and konjac powder (Km = 10.5 mg mL−1). It efficiently degraded mannan polysaccharides into mannose and mannooligosacccharides, and also hydrolyzed mannotriose and mannotetraose. These properties make CsMan5A highly useful in food, feed and paper/pulp industries.  相似文献   

11.
The influence of NH4+ on microbial CH4 oxidation is still poorly understood in landfill cover soils. In this study, effects of NH4+ addition on the activity and community structure of methanotrophs were investigated in waste biocover soil (WBS) treated by a series of NH4+-N contents (0, 100, 300, 600 and 1200 mg kg−1). The results showed that the addition of NH4+-N ranging from 100 to 300 mg kg−1 could stimulate CH4 oxidation in the WBS samples at the first stage of activity, while the addition of an NH4+-N content of 600 mg kg−1 had an inhibitory effect on CH4 oxidation in the first 4 days. The decrease of CH4 oxidation rate observed in the last stage of activity could be caused by nitrogen limitation and/or exopolymeric substance accumulation. Type I methanotrophs Methylocaldum and Methylobacter, and type II methanotrophs (Methylocystis and Methylosinus) were abundant in the WBS samples. Of these, Methylocaldum was the main methanotroph in the original WBS. With incubation, a higher abundance of Methylobacter was observed in the treatments with NH4+-N contents greater than 300 mg kg−1, which suggested that NH4+-N addition might lead to the dominance of Methylobacter in the WBS samples. Compared to type I methanotrophs, the abundance of type II methanotrophs Methylocystis and/or Methylosinus was lower in the original WBS sample. An increase in the abundance of Methylocystis and/or Methylosinus occurred in the last stage of activity, and was likely due to a nitrogen limitation condition. Redundancy analysis showed that NH4+-N and the C/N ratio had a significant influence on the methanotrophic community in the WBS sample.  相似文献   

12.
Jia Y  Ju X  Liao S  Song Z  Li Z 《Journal of plant physiology》2011,168(15):1723-1728
The increasing atmospheric CO2 and heavy metal contamination in soil are two of the major environmental problems. Knowledge of the Cd stress coping mechanisms is needed to understand the regulation of the plants’ metabolism under the increasing atmospheric CO2 levels. Lolium perenne L. was grown hydroponically under two concentrations of atmospheric CO2 (360 and 1000 μL L−1) and six concentrations of cadmium (0-160 μmol L−1) to investigate Cd uptake, Cd transportation, and variations in phytochelatin (PC) concentration. Cd concentrations in roots and shoots were decreased, but transport index (Ti) was increased under elevated CO2 compared to ambient CO2. Regardless of CO2 concentrations, Cd and PC concentrations, especially the concentrations of high molecular weight PCs (PC4, PC5, PC6) were higher with increasing Cd concentration in growth media and longer Cd exposure time. Under the elevated CO2, more high molecular weight PCs (PC4, PC5, PC6) in shoots and roots were synthesized compared to ambient CO2, with higher SH:Cd ratio in roots as well. These results indicate that under elevated CO2, L. perenne may be better protected against Cd stress with higher biomass, lower Cd concentration and better detoxification by phytochelatins.  相似文献   

13.
We investigated the effects of 1 and 10 mg L−1 AgNPs on germinating Triticum aestivum L. seedlings. The exposure to 10 mg L−1 AgNPs adversely affected the seedling growth and induced morphological modifications in root tip cells. TEM analysis suggests that the observed effects were due primarily to the release of Ag ions from AgNPs.  相似文献   

14.
Resveratrol showed biphasic activity in indomethacin-induced gastric ulcerated mice. A protective effect at a lower dose (2 mg kg−1) and a contraindicative effect at a higher dose of Resveratrol (10 mg kg−1) were observed. This phenomenon was possibly controlled by a COX-1 and eNOS balance, which ultimately maintained angiogenesis in Resveratrol-treated pre-ulcerated mice. The lower dose of Resveratrol (2 mg kg−1) augmented eNOS expression without altering COX-1 expression, but, at a higher dose (10 mg kg−1), Resveratrol predominantly suppressed COX-1 expression, which significantly reduced both PGE2 synthesis and angiogenesis. Thus it ultimately resulted in delay healing of indomethacin-induced gastric ulcers. Hence, it could be concluded that COX-1 and eNOS acted as key regulatory factors switching the biphasic effects of Resveratrol in indomethacin-induced ulcerated mice.  相似文献   

15.
Two extracellular chitinases (designated as Chi-56 and Chi-64) produced by Massilia timonae were purified by ion-exchange chromatography, ammonium sulfate precipitation, and gel-filtration chromatography. The molecular mass of Chi-56 was 56 kDa as determined by both SDS-PAGE and gel-filtration chromatography. On the other hand, Chi-64 showed a molecular mass of 64 kDa by SDS-PAGE and 28 kDa by gel-filtration chromatography suggesting that its properties may be different from those of Chi-56. The optimum temperature, optimum pH, pI, Km, and Vmax of Chi-56 were 55 °C, pH 5.0, pH 8.5, 1.1 mg mL−1, and 0.59 μmol μg−1 h−1, respectively. For Chi-64, these values were 60 °C, pH 5.0, pH 8.5, 1.3 mg mL−1, and 1.36 μmol μg−1 h−1, respectively. Both enzymes were stimulated by Mn2+ and inhibited by Hg2+, and neither showed exochitinase activity. The N-terminal sequences of Chi-56 and Chi-64 were determined to be Q-T-P-T-Y-T-A-T-L and Q-A-D-F-P-A-P-A-E, respectively.  相似文献   

16.
Chen S  Hu Q  Hu M  Luo J  Weng Q  Lai K 《Bioresource technology》2011,102(17):8110-8116
Fungal strain HU, isolated from activated sludge and identified as a member of the genus Cladosporium based on morphology and sequencing of 28S rRNA, was shown to degrade 90% of fenvalerate, fenpropathrin, β-cypermethrin, deltamethrin, bifenthrin, and permethrin (100 mg L−1) within 5 days. Fenvalerate was utilized as sole carbon and energy source and co-metabolized in the presence of sucrose. Degradation of fenvalerate occurred at pH 5-10 at 18-38 °C. The fungus first hydrolyzed the carboxylester linkage to produce α-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxybenzaldehyde, and subsequently degraded these two compounds with a qmax, Ks and Ki of 1.73 d−1, 99.20 mg L−1 and 449.75 mg L−1, respectively. Degradation followed first-order kinetics. These results show that the fungal strain may possess potential to be used in bioremediation of pyrethroid-contaminated environments.  相似文献   

17.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

18.
19.
An Enterobacter strain (GY-1) with high activity of decolorization of Reactive Black 5 (RB 5) was isolated from textile wastewater treating sludge. The kinetic characteristics of dye decolorization by the strain GY-1 were determined quantitatively using the diazo dye, RB 5. Effects of different operation parameters (inoculum size, pH, temperature and salinity) and various electron donors on decolorization of the azo dye by GY-1 were systematically investigated to reveal the primary factors that determine the performance of the azo dye decolorization. The decolorization of RB 5 was attributed to extracellular enzymes. A kinetic model was established giving the dependence of decolorization rate on cell mass concentration (first order). Decolorization rate increased with increasing temperature from 20 to 35 °C, which can be predicted by Arrhenius equation with the activation energy (Ea) of 8.50 kcal mol−1 and the frequency factor (A0) of 6.28 × 107 mg l g MLSS−1 h−1. Michaelis-Menten kinetics and Eadie-Hofstee plot were used to determine Vmax, 1.05 mg l−1 h−1 and Km, 24.06 mg l−1.  相似文献   

20.
Tolerance and remedial function of submersed macrophyte Vallisneria spiralis to phenanthrene in freshwater sediments were investigated by manipulating initial phenanthrene concentrations in sediments from 8 to 80 mg kg−1 dry sediment. The biomass growth of V. spiralis on phenanthrene-spiked sediments was not adversely affected until initial phenanthrene concentrations in sediments increased to 80 mg kg−1 dry sediment. V. spiralis might evolve adaptive mechanisms to toxic contaminants in sediment, and then could change the growth patterns in order to decrease the toxicity on its growth. The removal efficiencies of phenanthrene from the planted sediments were 18% higher than those from the sediments without plant even under an initial phenanthrene concentration of 80 mg kg−1 dry sediments. The enhanced removal of phenanthrene in sediments by the plant might be achieved mainly by the synergism between plant roots and microbes in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号