首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Iberian Peninsula encompasses more than 80% of the species richness of European aquatic ranunculi. The floristic diversity of the phytocoenosis characterised by aquatic Ranunculus and the main physical–chemical factors of the water were studied in 43 localities of the central Iberian Peninsula. Four aquatic Ranunculus communities are found in most of the aquatic environments. These are species-poor and have an uneven distribution: three species of Batrachium are heterophyllous and their communities are distributed in different aquatic ecosystems on silicated substrates; one species is homophyllous and its community occurs in various aquatic ecosystems with carbonated waters. In the Mediterranean climate, Ranunculus species are present in different habitats, as shown by the results of all the statistical analyses. Ranunculus trichophyllus communities occur in base-rich waters with a high buffering capacity (2273.44 ± 794.57 mg CaCO3 L−1) and a high concentration of cations (Ca2+, 121 ± 33.12 mg L−1; Mg2+, 71.64 ± 82.77 mg L−1), nitrates (2.89 ± 4.80 mg L−1), ammonium (2.19 ± 1.36 mg L−1) and sulphates (216.25 ± 218.54 mg L−1). Ranunculus penicillatus communities are found in flowing waters with a high concentration of phosphates (0.48 ± 0.6 mg L−1) and intermediate buffering capacity (683.66 ± 446.76 mg CaCO3 L−1). Both Ranunculus pseudofluitans and Ranunculus peltatus communities grow in waters with low buffering capacity (R. pseudofluitans, 385.91 ± 209.2 mg CaCO3 L−1; R. peltatus, 263.3 ± 180.36 mg CaCO3 L−1), and a low concentration of cations (R. pseudofluitans: Ca2+, 12.57 ± 9.42 mg L−1; Mg2+, 3.42 ± 1.67 mg L−1; R. peltatus: Ca2+, 15 ± 18.26 mg L−1; Mg2+, 6.26 ± 8.89 mg L−1) and nutrients (R. pseudofluitans: nitrates, 0.23 ± 0.2 mg L−1; phosphates, 0.09 ± 0.1 mg L−1; R. peltatus: nitrates, 0.19 ± 0.21 mg L−1; phosphates, 0.09 ± 0.12 mg L−1); the first in flowing waters, the latter in still waters.  相似文献   

2.
We investigated the effects of 1 and 10 mg L−1 AgNPs on germinating Triticum aestivum L. seedlings. The exposure to 10 mg L−1 AgNPs adversely affected the seedling growth and induced morphological modifications in root tip cells. TEM analysis suggests that the observed effects were due primarily to the release of Ag ions from AgNPs.  相似文献   

3.
Wang B  Lan CQ 《Bioresource technology》2011,102(10):5639-5644
Biomass productivity of 350 mg DCW L−1 day−1 with a final biomass concentration of 3.15 g DCW L−1 was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L−1, respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L−1, the alga achieved a final biomass concentration of 2.1 g DCW L−1 and a biomass productivity of 233.3 mg DCW L−1 day−1. While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment.  相似文献   

4.
Denitrification beds are a simple approach for removing nitrate (NO3) from a range of point sources prior to discharge into receiving waters. These beds are large containers filled with woodchips that act as an energy source for microorganisms to convert NO3 to nitrogen (N) gases (N2O, N2) through denitrification. This study investigated the biological mechanism of NO3 removal, its controlling factors and its adverse effects in a large denitrification bed (176 m × 5 m × 1.5 m) receiving effluent with a high NO3 concentration (>100 g N m−3) from a hydroponic glasshouse (Karaka, Auckland, New Zealand). Samples of woodchips and water were collected from 12 sites along the bed every two months for one year, along with measurements of gas fluxes from the bed surface. Denitrifying enzyme activity (DEA), factors limiting denitrification (availability of carbon, dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, pH, and concentrations of NO3, nitrite (NO2) and sulfide (S2−)), greenhouse gas (GHG) production - as nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) - and carbon (C) loss were determined. NO3-N concentration declined along the bed with total NO3-N removal rates of 10.1 kg N d−1 for the whole bed or 7.6 g N m−3 d−1. NO3-N removal rates increased with temperature (Q10 = 2.0). In laboratory incubations, denitrification was always limited by C availability rather than by NO3. DO levels were above 0.5 mg L−1 at the inlet but did not limit NO3-N removal. pH increased steadily from about 6 to 7 along the length of the bed. Dissolved inorganic carbon (C-CO2) increased in average about 27.8 mg L−1, whereas DOC decreased slightly by about 0.2 mg L−1 along the length of the bed. The bed surface emitted on average 78.58 μg m−2 min−1 N2O-N (reflecting 1% of the removed NO3-N), 0.238 μg m−2 min−1 CH4 and 12.6 mg m−2 min−1 CO2. Dissolved N2O-N increased along the length of the bed and the bed released on average 362 g dissolved N2O-N per day coupled with N2O emission at the surface about 4.3% of the removed NO3-N as N2O. Mechanisms to reduce the production of this GHG need to be investigated if denitrification beds are commonly used. Dissolved CH4 concentrations showed no trends along the length of the bed, ranging from 5.28 μg L−1 to 34.24 μg L−1. Sulfate (SO42−) concentrations declined along the length of the bed on three of six samplings; however, declines in SO42− did not appear to be due to SO42− reduction because S2− concentrations were generally undetectable. Ammonium (NH4+) (range: <0.0007 mg L−1 to 2.12 mg L−1) and NO2 concentrations (range: 0.0018 mg L−1 to 0.95 mg L−1) were always very low suggesting that anammox was an unlikely mechanism for NO3 removal in the bed. C longevity was calculated from surface emission rates of CO2 and release of dissolved carbon (DC) and suggested that there would be ample C available to support denitrification for up to 39 years.This study showed that denitrification beds can be an efficient tool for reducing high NO3 concentrations in effluents but did produce some GHGs. Over the course of a year NO3 removal rates were always limited by C and temperature and not by NO3 or DO concentration.  相似文献   

5.
The aim of this study was to investigate the cellular toxicity of copper-induced injury to the black tiger shrimp Penaeus monodon. The 24 h, 48 h, 72 h and 96 h LC50 (median lethal concentration) of Cu2+ on P. monodon (11.63 ± 1.14 g) were found to be 3.49, 1.54, 0.73 and 0.40 mg L− 1, respectively. Total haemocyte count (THC), phagocytic activity, respiratory burst (RB), cytoplasmic free-Ca2+ (cf-Ca2+) concentration and apoptotic cell ratio of shrimp were determined after exposure to different concentrations of Cu2+ (0, 0.05, 0.5, 1.5 and 3.5 mg L− 1) for 0, 6, 12, 24 and 48 h. There was no significant effect on the analytic indicator of shrimp exposed to 0.05 mg L− 1 Cu2+. THC decreased after Cu-exposure to 0.5 mg L− 1 for 48 h, 1.5 mg L− 1 for 24 h and 3.5 mg L− 1 for 12 h. Phagocytic activity decreased in P. monodon following 48 h exposure to 3.5 mg L− 1 Cu2+. RB was induced after 6 h exposure to 0.5, 1.5 and 3.5 mg L− 1 Cu2+. cf-Ca2+ concentration increased after 48 h exposure to 0.5 mg L− 1 Cu2+, and 12 h exposure to 1.5 and 3.5 mg L− 1 Cu2+. The percentage of apoptotic cells increased to 9.5%, 16.3% and 18.6% respectively following 48 h exposure to 0.5, 1.5 and 3.5 mg L− 1 Cu2+. These results indicate that Cu can induce oxidative stress, elevation of cf-Ca2+ and cell apoptosis, and inhibit phagocytic activity in the shrimp P. monodon, and the lethal injury of Cu2+ to P. monodon may be mainly due to the sharp reduction of THC caused by ROS-induced apoptosis.  相似文献   

6.
The formation of aerobic granules with low organic loading synthetic wastewater (150-200 mg L−1 of influent COD, acetate/propionate = 1/3) at low aeration rate (0.6 cm s−1 of superficial gas velocity) had been investigated in the anaerobic/oxic/anoxic SBR. Aerobic granules with smooth surface and compact structure were successfully obtained after 50 days. However, these aerobic granules were unstable when the d(0.9) of granules increased to more than 1 mm. The results suggested that the aerobic granules with small diameter (smaller than 1000 μm) were more favorable for treating the low substrate loading wastewater at the low aeration rate. The cycle test revealed that most of the influent COD was removed at the anaerobic stage. The effluent concentrations of N-NH4+ and P-PO43− were lower than 1 mg L−1, and the effluent concentration of nitrate gradually decreased with the granulation. Phosphate accumulating organisms were found to utilize O2 or NOx as electron acceptor for phosphorus removal in the study. Simultaneous nitrogen and phosphorus removal occurred inside the granules.  相似文献   

7.
The acid biocoagulants produced from non-sterile lactic acid fermentation by Lactobacillus casei TISTR 1500 were used to settle colloidal protein, mainly casein, at the isoelectric point in dairy effluent prior to secondary treatment. High concentration of azo dye (Ponceau 4R) in the dairy wastewater and the stress of starvation decreased the efficiencies of the micro-aerobic SBR. Consequently, low casein recovery obtained and organic removal suffered a decline. The number of lactic acid bacteria (LAB) also declined from log 7.4 to log 5.30 in the system fed with 400 mg L−1 of the dye containing wastewater. The recovery of the system, however, showed that 25,000 mg COD L−1 influent with 200 mg L−1 of the dye maintained the growth of LAB in the range of log 7.74–8.12, with lactic and acetic production (2597 and 197 mg L−1) and 83% protein removal. The results in this study suggested that the inhibitory effects were compensated with high organic content feeding.  相似文献   

8.
Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m−3 d−1 and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L−1 (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m−3 d−1 and HRT of 15.6 days produced effluent with nitrate concentration of ∼0.025 mg N L−1 (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.  相似文献   

9.
Performance of a wastewater treatment system utilizing a sulfur-redox reaction of microbes was investigated using a pilot-scale reactor that was fed with actual sewage. The system consisted of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with a recirculation line. Consequently, the total CODCr (465 ± 147 mg L−1; total BOD of 207 ± 68 mg L−1) at the influent was reduced (70 ± 14 mg L−1; total BOD of 9 ± 2 mg L−1) at the DHS effluent under the conditions of an overall hydraulic retention time of 12 h, a recirculation ratio of 2, and a low-sewage temperature of 7.0 ± 2.8 °C. A microbial analysis revealed that sulfate-reducing bacteria contributed to the degradation of organic matter in the UASB reactor even in low temperatures. The utilized sulfur-redox reaction is applicable for low-strength wastewater treatment under low-temperature conditions.  相似文献   

10.
Shooting range soils frequently contain anomalous concentrations of metals (e.g. Pb, Zn, Mn) and Sb coming from bullets which may be released into the environment. In a pot experiment, we investigated metal and Sb uptake by three plant species (Plantago lanceolata, Lolium perenne and Triticum aestivum) growing on a calcareous shooting range soil (pH 7.8; 500 mg kg−1 Pb, 21 mg kg−1 Sb) and the uptake changes when an acidic fertilizer solution was applied to the soil. Metal and Sb solubility in the soil was determined by extraction with 0.1 M NaNO3. In addition, we measured pH, electrical conductivity and dissolved organic carbon in drainage samples. The results showed significant increase over time of pH (from 7.8 to 8.3) and decrease of electrical conductivity and dissolved organic carbon (from 230 to ∼130 mg L−1). Fertilizer application increased NaNO3-extractable Pb and Sb and root:shoot biomass ratio but not plant metal uptake. In T. aestivum spikes accumulated more Zn, Ni and Cu than shoots and grains. Mn and Zb uptake was correlated in L. perenne shoots. P. lanceolata, a Sb-bioindicator, did not accumulate high amounts of Sb (<1 mg kg−1).  相似文献   

11.
Lai HT  Lin JS  Chien YH 《Bioresource technology》2011,102(9):5425-5430
This study investigated the effects of light (visible light - 5800 lux, 24 h) or dark regime and aerobic or anaerobic condition on the decay of added oxolinic acid (OA) at 5, 10 and 20 mg L−1 in eel pond sediment. An asymptotic decaying exponential model Ct = Cmin + Co × exp (−k × t) was used to facilitate quantitative approach to OA transformation, where Ct is the concentration of OA after t days, Cmin the estimated level-off concentration of OA residue, Co the concentration of added OA and k the decaying coefficient. OA decayed faster under light (Cmin = 4.6 mg L−1) than under dark (Cmin = 7.8 mg L−1) and also decayed faster under aerobic (Cmin = 4.0 mg L−1) than under anaerobic condition (Cmin = 8.5 mg L−1). Cmin increased with Co. Sundrying and tilling eel pond bottom should be able to reduce OA residue significantly.  相似文献   

12.
The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min−1 and plant density of 30 mg L−1 for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L−1 and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents.  相似文献   

13.
Salt marshes near urban, industrial and mining areas are often affected both by heavy metals and by eutrophic water. The aim of this study was to assess and evaluate the main processes involved in the decrease of nitrate concentration in pore water of mine wastes flooded with eutrophic water, considering the presence or absence of plant rhizhosphere. Basic (pH ∼ 7.8) carbonated loam mine wastes and free-carbonated acidic (pH ∼ 6.2) sandy-loam mine wastes were collected from polluted coastal salt marshes of SE Spain which regularly receive nutrient-enriched water. The wastes were put in pots and flooded for 15 weeks with eutrophic water (dissolved organic carbon ∼26 mg L−1, PO43− ∼23 mg L−1, NO3 ∼180 mg L−1). Three treatments were assayed for each type of waste: pots with Sarcocornia fruticosa, pots with Phragmites australis and unvegetated pots. Soluble organic carbon, nitrate, soluble Cd, Pb and Zn, pH and Eh were monitored. But the 2nd day of flooding, nitrate concentrations had decreased between 70% and 90% (equivalent to 1.01-1.12 g N-NO3 m−2 day−1) with respect to the content in the water used for flooding, except in unvegetated pots with acidic wastes. Denitrification was the main mechanism associated with the removal of nitrate. The role of vegetation in improving the rhizospheric environment was relevant in the acidic wastes because higher sand content, lower pH and higher soluble metal concentrations might strongly hinder microbial activity Hence, revegetation of salt marshes polluted by acidic sandy mining wastes might improve the capacity of this type of environment to act as a green filter against excessive nitrate contents flowing through them.  相似文献   

14.
The effects of lead (Pb; 0-1000 mg L−1) stress on the growth and biochemical responses of seedlings of Avicennia marina were examined, with and without cotyledons. After 50 days exposure to Pb, the growth of A. marina was not affected at low concentrations (0-50 mg L−1 Pb). Roots tolerated to high Pb concentrations, with a significant reduction in biomass only at 1000 mg L−1 Pb. In leaves and stems, 500 mg L−1 Pb already caused a significant decline in biomass (0.6-fold). Accumulation of Pb occurred mainly in roots, with some accumulation in cotyledons but very little in leaves. Pb concentrations in both roots and cotyledons were proportional to the Pb levels in the substrate (y = 25.945x − 4281, r2 = 0.67, P = 0.001 for roots, and y = 0.249x + 45.636, r2 = 0.879, P < 0.001 for leaves). In treatments with 500 and 1000 mg L−1 Pb, nitrogen concentrations in cotyledons were higher, while the carbon to nitrogen ratios were significantly lower than in the control without Pb. The Pb levels had significant positive effects on sugar content, MDA concentration and POD activity in both roots and leaves, while the removal of cotyledons significantly decreased the POD activity and MDA content in roots A. marina seedlings according to the two-way multivariate analysis of variance test. The sugar content in the cotyledon of Pb-treated seedlings was significantly lower than that in the control (without Pb), suggesting that more carbohydrate reserves (e.g., sugar) stored in cotyledons had been mobilized to leaves and even roots under Pb treatment.  相似文献   

15.
Chen S  Hu Q  Hu M  Luo J  Weng Q  Lai K 《Bioresource technology》2011,102(17):8110-8116
Fungal strain HU, isolated from activated sludge and identified as a member of the genus Cladosporium based on morphology and sequencing of 28S rRNA, was shown to degrade 90% of fenvalerate, fenpropathrin, β-cypermethrin, deltamethrin, bifenthrin, and permethrin (100 mg L−1) within 5 days. Fenvalerate was utilized as sole carbon and energy source and co-metabolized in the presence of sucrose. Degradation of fenvalerate occurred at pH 5-10 at 18-38 °C. The fungus first hydrolyzed the carboxylester linkage to produce α-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxybenzaldehyde, and subsequently degraded these two compounds with a qmax, Ks and Ki of 1.73 d−1, 99.20 mg L−1 and 449.75 mg L−1, respectively. Degradation followed first-order kinetics. These results show that the fungal strain may possess potential to be used in bioremediation of pyrethroid-contaminated environments.  相似文献   

16.
The genus Enterococcus belong to the genera of bacteria that produce lactic acid and can confer health benefits to living organisms. Selenium (Se) is an essential micronutrient for humans and animals. Thirty-six Enterococcus species isolated from dairy products were screened for Se(IV) sorption capacity for use as a probiotics in animal nutrition. Several isolates grew luxuriantly and significantly removed Se(IV) from Se(IV) amended medium. Two isolates, LAB 14 and LAB 18, identified by 16S rRNA gene sequence analysis as Enterococcus faecalis (98% nucleotide sequence similarity) and Enterococcus faecium (97% nucleotide sequence similarity), respectively, were selected for further studies. The two isolates grew optimally and removed selenium at initial pH 7.0. Optimum removal of Se(IV) from the medium was recorded at 25 °C. Time course studies showed that after 8 h of incubation LAB 14 and LAB 18 cultures displayed the highest biomass production and Se(IV) bioremoval and most selenite in culture depleted in 24 h. At initial concentrations of 10 mg L−1 and 60 mg L−1, E. faecium (LAB 18) removed 9.91 mg L−1 and 59.70 mg L−1, respectively after 24 h. Similar Se(IV) bioremoval capacity was recorded with E. faecalis (LAB 14). Substantial amount of Se was detected in biomass of E. faecium (0.4599 mg g−1 of dry weight) and E. faecalis (0.4759 mg g−1 of dry weight). The significant uptake and transformation of Se(IV) by the Enterococcus species observed in this study suggest that they can be used to deliver dietary Se through feed augmentation with Se(IV)-enriched Enterococcus biomass.  相似文献   

17.
The aeration of the cathode compartment of bioelectrochemical systems (BESs) was recently shown to promote simultaneous nitrification and denitrification (SND). This study investigates the cathodic metabolism under different operating conditions as well as the structural organization of the cathodic biofilm during SND. Results show that a maximal nitrogen removal efficiency of 86.9 ± 0.5%, and a removal rate of 3.39 ± 0.08 mg N L−1 h−1 could be achieved at a dissolved oxygen (DO) level of 5.73 ± 0.03 mg L−1 in the catholyte. The DO levels used in this study are higher than the thresholds previously reported as detrimental for denitrification. Analysis of the cathodic half-cell potential during batch tests suggested the existence of an oxygen gradient within the biofilm while performing SND. FISH analysis corroborated this finding revealing that the structure of the biofilm included an outer layer occupied by putative nitrifying organisms, and an inner layer where putative denitrifying organisms were most dominant. To our best knowledge this is the first time that nitrifying and denitrifying microorganisms are simultaneously observed in a cathodic biofilm.  相似文献   

18.
The use of wetlands to remediate acid mine drainage has expanded rapidly since the realisation that acid coal mine drainage running into natural sphagnum wetlands undergoes an increase in pH and a precipitation of metals. However, our study suggests that the inclusion of plants in the acid mine drainage treatment system may be questionable, due to inefficiencies caused by exudation of dissolved organic carbon (DOC), and in particular its phenolic constituents. They complex with iron, causing increased solubility, the exact opposite of what is required to facilitate amelioration. The addition of minewater to planted wetland mesocosms initially caused a decline in Fe concentrations, typically from over 1100 to a low of 75 mg L−1. However, it increased higher than 300 mg L−1 after 15 days. The rise in iron occurred concurrently with DOC and phenolic increases; 15-69 and 5-15 mg L−1, respectively, for Eriophorum angustifolium. Removal of DOC by precipitation with calcium lowered the DOC abundance, but without a simultaneous decrease in iron concentration. The concentration of one fraction of the DOC, phenolic compounds, did not decline, and we propose that the Fe was complexed with that phenolic DOC pool. The proposal was confirmed by enzymic depletion of the phenolic compounds using phenol oxidase. Our findings suggest that phenolic complexation represents a potent constraint on wetland-based bioremediation of iron in acid mine drainage.  相似文献   

19.
There has been significant global growth in the use of constructed wetlands for wastewater treatment. The fundamental microbial processes involved in the biodegradation of organic wastewater pollutants determine the range of design and operational parameters relevant to individual constructed wetlands. In this study, the biodegradation and mineralization of ethanol by acclimated and non-acclimated microbial populations in pilot-scale constructed wetlands were compared. By increasing the pollutant concentration at incremental intervals (incremental priming), the biodegradative capacity of a sand-filled constructed wetland was significantly enhanced. At an influent COD concentration of 15,800 mg L−1, no volatile fatty acids were detected in the effluent of an incrementally primed system and the maximum effluent COD concentration was 180 mg L−1. In contrast, an identical, unprimed system, amended with a lower concentration of COD (7587 mg L−1), exhibited a maximum effluent COD concentration of 1400 mg L−1, with the anaerobic metabolites, butyrate and propionate accounting for up to 83% of the effluent COD. It was demonstrated that the use of incremental priming, together with a vertical subsurface flow mode of operation enhanced long-term function of constructed wetlands. Future research should focus on determining the concentration gradients and incremental intervals necessary for optimal microbial acclimation to a range of organic pollutants and/or wastewaters, in order to minimize start-up times without significantly impairing the benefits derived from incremental priming.  相似文献   

20.
Wetlands are capable of reducing nutrient loadings to receiving water bodies, and hence many artificial wetlands have been constructed for wastewater nutrient removal. In this study, diffusive equilibrium in thin films (DETs) and equilibrium phosphorus concentration (EPC0) analysis were used to examine the role of sediment as a nutrient source or sink in a constructed treatment wetland in summer. The effect of dredging on sediment-water nutrient exchange was also studied. Soluble reactive phosphorus (SRP), ammonium (NH4+) and sulphate (SO42−) concentration profiles were measured by DET across the sediment-water interface (SWI) in both a settling pond and iris reed bed within the wetland. The SRP concentrations in the sediment pore-waters of the settling pond were extremely high (up to 29,500 μg l−1) near the SWI. This is over an order of magnitude higher than the levels found in the water column, which in turn are over an order of magnitude higher than environmental levels proposed to limit eutrophication in rivers. The profiles demonstrated an average net release of SRP and NH4+ from the settling pond sediment to the overlying water of 58 mg m−2 d−1 (±32 mg m−2 d−1 (1 sd)) and 16 mg m−2 d−1 (±25 mg m−2 d−1 (1 sd)), respectively. The DET SO42− concentration profiles revealed that the sediment was anoxic within 2 cm of the SWI. Dredging of the reed bed made no significant difference to the P release characteristics across the SWI. The EPC0s were much lower than the SRP concentration of the overlying water, indicating that the sediment had the potential to act as a phosphate sink. The apparent contradiction of the DET and EPC0 results is attributed to the fact that DET measurements are made in situ, where as EPC0 measurements are ex situ. These results show that substantial releases of P can occur from wetland sediments, and also highlight the need for caution when interpreting ex situ EPC0 analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号