首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodiversity and ecosystem functioning experiments have demonstrated that plant biomass of species grown in mixtures is often greater than plant biomass of monocultures (i.e., mixtures over yield). While we understand that plant species utilize resources differently, how a combination of species increases resource use and productivity is not well known, especially in wetland ecosystems. Here, we used a mesocosm experiment to explore diversity effects on plant biomass production and to examine the role of N partitioning as a mechanism for overyielding in wetland ecosystems. Plant functional groups (FGs) represented the unit of diversity, and we included five levels of diversity (0-4 FGs). To test for N partitioning, we used a stable isotope technique to determine niche breadth and proportion similarity of inorganic N use (NO3 and NH4+) for individual FGs as well as mixtures containing 3 and 4 FGs. We found that total plant biomass increased in the first season from an average of 290 ± 60 SE g ash-free dry mass (AFDM) m−2 at the 1 FG level to 490 ± 70 g AFDM m−2 at the 4 FG level and in the second season from an average of 560 ± 80 g AFDM m−2 at the 1 FG level to 1000 ± 90 g AFDM m−2 at the 4 FG level indicating overyielding. Plant species comprising the majority of mesocosm biomass demonstrated preferential uptake of 15NO3, while species with relatively less biomass (e.g., Acorus calamus and Carex crinita) preferred 15NH4+. Concentrations of 15N in biomass increased with FG richness, but only in the 15NO3 treatment. Niche breadth did not vary among levels of FG richness. We observed a greater niche overlap with an increase of FGs, with species taking up greater proportion of 15NO3 than 15NH4+. Our results indicate that plant overyielding in wetland mesocosms is not the result of niche partitioning of N chemical forms, but is associated with greater uptake of NO3.  相似文献   

2.
Crude glycerol is a major byproduct of the biodiesel industry; previous research has proved the feasibility of producing docosahexaenoic acid (DHA, 22:6 n − 3) through fermentation of the algae Schizochytrium limacinum on crude glycerol. The objective of this work is to investigate the cell growth kinetics, substrate utilization efficiency, and DHA production of the algae through a continuous culture. Steady-state biomass yield, biomass productivity, growth yield on glycerol, specific glycerol consumption rate, and fatty acid composition were investigated within the range of dilution rate (D) from 0.2 to 0.6 day−1, and the range of feed crude glycerol concentration (S0) from 15 to 120 g/L. The maximum specific growth rate was determined as 0.692 day−1. The cells had a true growth yield of 0.283 g/g but with a relatively high maintenance coefficient (0.2216 day−1). The highest biomass productivity of 3.88 g/L-day was obtained at D = 0.3 day−1 and S0 = 60 g/L, while the highest DHA productivity (0.52 g/L-day) was obtained at D = 0.3 day−1 and S0 = 90 g/L due to the higher DHA content at S0 = 90 g/L. The biomass and DHA productivity of the continuous culture was comparable to those of batch culture, while lower than the fed-batch culture, mainly because of the lower DHA content obtained by the continuous culture. Overall, the results show that continuous culture is a powerful tool to investigate the cell growth kinetics and physiological behaviors of the algae growing on biodiesel-derived crude glycerol.  相似文献   

3.
A fully factorial pond experiment was designed using two irradiance levels and two phosphorus concentrations to investigate irradiance and phosphorus effects on the growth of three submerged macrophytes: common waterweed (Elodea canadensis), Eurasian water milfoil (Myriophyllum spicatum), and water stargrass (Zosterella dubia). Results revealed that higher irradiance (230 μmol s−1 m−2 vs. 113 μmol s−1 m−2 at 2 m depth) had significant positive effects on submerged macrophyte growth: increasing the number of individuals (seven-fold), the number of species surviving (two-fold), aboveground biomass (11-fold), belowground biomass (10-fold), and total biomass (11-fold), whereas elevated sediment phosphorus (2.1–3.3 mg g−1 vs. 0.7 mg g−1 dry sediment) did not have any significant impact. However, responses to irradiance differ among macrophyte species due to their morphology and physiology. Waterweed increased in numbers of individuals and total biomass under high irradiance while biomass per individual remained the same (∼0.02 g). The other species increased both in numbers and biomass per individual. These results suggest that increased irradiance rather than decreased phosphorus loading is the main driver of changes in submerged macrophytes in North American temperate lake ecosystems.  相似文献   

4.
The microalgae, Chlorella sp., were cultivated in various culture modes to assess biomass and lipid productivity in this study. In the batch mode, the biomass concentrations and lipid content of Chlorella sp. cultivated in a medium containing 0.025–0.200 g L−1 urea were 0.464–2.027 g L−1 and 0.661–0.326 g g−1, respectively. The maximum lipid productivity of 0.124 g d−1 L−1 occurred in a medium containing 0.100 g L−1 urea. In the fed-batch cultivation, the highest lipid content was obtained by feeding 0.025 g L−1 of urea during the stationary phase, but the lipid productivity was not significantly increased. However, a semi-continuous process was carried out by harvesting the culture and renewing urea at 0.025 g L−1 each time when the cultivation achieved the early stationary phase. The maximum lipid productivity of 0.139 g d−1 L−1 in the semi-continuous culture was highest in comparison with those in the batch and fed-batch cultivations.  相似文献   

5.
Wang B  Lan CQ 《Bioresource technology》2011,102(10):5639-5644
Biomass productivity of 350 mg DCW L−1 day−1 with a final biomass concentration of 3.15 g DCW L−1 was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L−1, respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L−1, the alga achieved a final biomass concentration of 2.1 g DCW L−1 and a biomass productivity of 233.3 mg DCW L−1 day−1. While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment.  相似文献   

6.
The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor.The maximal irradiance around noon differs from 400 μmol photons m−2 s−1 in the vertical position to 1800 μmol photons m−2 s−1 in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture−1 d−1. The highest photosynthetic efficiency was found for the vertical simulation, 1.3 g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol−1) and to the theoretical maximal yield (1.8 g mol−1). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.  相似文献   

7.
Glycerol was utilized by Cupriavidus necator DSM 545 for production of poly-3-hydroxybutyrate (PHB) in fed-batch fermentation. Maximal specific growth rates (0.12 and 0.3 h−1) and maximal specific non-growth PHB production rate (0.16 g g−1 h−1) were determined from two experiments (inocula from exponential and stationary phase). Saturation constants for nitrogen (0.107 and 0.016 g L−1), glycerol (0.05 g L−1), non-growth related PHB synthesis (0.011 g L−1) and nitrogen/PHB related inhibition constant (0.405 g L−1), were estimated. Five relations for specific growth rate were tested using mathematical models. In silico performed optimization procedures (varied glycerol/nitrogen ratio and feeding) has resulted in a PHB content of 70.9%, shorter cultivation time (23 h) and better PHB yield (0.347 g g−1). Initial concentration of biomass 16.8 g L−1 and glycerol concentration in broth between 3 and 5 g L−1 were decisive factors for increasing of productivity.  相似文献   

8.
Vermicomposting potential of Allolobophora parva is well proven in recent experiments but little is known about its growth and reproduction performance. Efforts were made in this study to assess the biological productivity of A. parva in cattle waste solids under laboratory conditions. The growth and reproduction performance of A. parva was monitored up to its termination state in experimental beddings. A. parva was weighed weekly and cocoons produced during the interval were also counted. The maximum individual biomass and maximum growth rate (wt. mg worm−1 week−1) was 190.9 ± 0.07 mg (after 13 weeks) and 2.66 (after 12th week), respectively. A. parva showed the maximum values of cocoon number (within a week) and reproduction rate: 26 ± 1.12 and 0.74 ± 0.05 cocoon worm−1 week−1, respectively, during the 8th week of vermiculture. Cocoon production in earthworms was terminated after the 17th week of culture. Data suggested that A. parva may acts as a potential candidate to convert negligible organic waste resources into worm biomass for sustainable environmental management.  相似文献   

9.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

10.
Zhang J  Zhou J  Liu J  Chen K  Liu L  Chen J 《Bioresource technology》2011,102(7):4807-4814
The immediate precursor of L-ascorbic acid, or vitamin C, is 2-keto-l-gulonic acid (2-KLG). This is commonly produced commercially by Ketogulonicigenium vulgare and Bacillus megaterium, using corn steep liquor powder (CSLP) as an organic nitrogen source. In this study, the effects of the individual CSLP components (amino acids, vitamins, and metal elements) on 2-KLG production were evaluated, with the aim of developing a complete, chemically defined medium for 2-KLG production. Forty components of CSLP were analyzed, and key components were correlated to biomass, 2-KLG productivity, and consumption rate of L-sorbose. Glycine had the greatest effect, followed by serine, biotin, proline, nicotinic acid, and threonine. The combination of 0.28 g L−1 serine, 0.36 g L−1glycine, 0.18 g L−1 threonine, 0.28 g L−1proline, 0.19 g L−1nicotinic acid, and 0.62 mg L−1biotin in a chemically defined medium produced the highest maximum biomass concentration (4.2 × 109 cfu mL−1), 2-KLG concentration (58 g L−1), and yield (0.76 g g−1) after culturing for 28 h.  相似文献   

11.
The brown alga Laminaria japonica is distributed from southern Hokkaido to the northeastern Honshu in Japan. Recently, aquaculture of L. japonica has expanded to the southern coast of Japan and to China along the East China Sea. In order to elucidate the growth, biomass and productivity of L. japonica in a subtropical area, we cultivated and examined it in the Uwa Sea, in southwestern Japan over a period of 2 years. The seawater temperature ranged from 13.8 to 26.8 °C in 2001/2002 and from 13.1 to 27.2 °C in 2002/2003. In 2001/2002, the maximum density, maximum mean length and maximum mean wet wt. of L. japonica were 59.7 ± 28.0 ind. 50 cm− 1 (mean ± S.D.), 187.5 ± 82.7 cm (360 cm in the largest individual) and 130.1 ± 94.6 g wet wt., respectively. In 2002/2003, these values were 94.7 ± 22.2 ind. 50 cm− 1, 159.3 ± 74.4 cm (300 cm in the largest individual) and 95.2 ± 69.5 g wet wt., respectively. Thus, the length and weight increased when the density was low (2001/2002), and the length and weight decreased when the density was high (2002/2003). The maximum biomass was estimated to be 7200 ± 3400 g wet wt. 50 cm− 1 in 2001/2002 and 7300 ± 2000 g wet wt. 50 cm− 1 in 2002/2003. Annual production was estimated to be 33.3 kg wet wt. m− 1 year− 1 in 2001/2002 and 34.0 kg wet wt. m− 1 year− 1 in 2002/2003. The present study indicates that the annual production of L. japonica per rope of 1 m at Uwajima Bay, the Uwa Sea corresponded to 1.1-2.2 m2 of that of Hokkaido in their native area. Thus, the present study indicates that L. japonica is highly adaptable because it is able to keep a high level of productivity when grown in water with a high temperature.  相似文献   

12.
Current knowledge about the abundance, growth, and primary production of the seagrass Cymodocea nodosa (Ucria) Ascherson is biased towards shallow (depth <3 m) meadows although this species also forms extensive meadows at larger depths along the coastlines. The biomass and primary production of a C. nodosa meadow located at a depth of 8–11 m was estimated at the time of maximum annual vegetative development (summer) using reconstruction techniques, and compared with those available from shallow meadows of this species. A depth-referenced data base of values at the time of maximum annual development was compiled to that end. The vegetative development of C. nodosa at 8–11 m depth was not different from that achieved by shallow (depth <3 m) meadows of this species. Only shoot density, which decreased from 1637 to 605 shoots m−2, and the annual rate of elongation of the horizontal rhizome, which increased from 23 to 71 cm apex−1 year−1, were different as depth increased from <3 to 8–11 m. Depth was a poor predictor of the vegetative development and primary production of C. nodosa. The biomass of rhizomes and roots decreased with depth (g DW m−2 = 480 (±53, S.E.) − 32 (±15, S.E.) depth (in m); R2 = 0.12, F = 4.65, d.f. = 35, P = 0.0381) which made total biomass of the meadow to show a trend of decrease with depth but the variance of biomass data explained by depth was low. The annual rate of elongation of the horizontal rhizome showed a significant positive relationship with depth (cm apex−1 year−1 = 18 (±5.1, S.E.) + 5.0 (±1.33, S.E.) depth (in m); R2 = 0.50, F = 14.07, d.f. = 14, P = 0.0021). As shoot size and growth did not change significantly with depth, the reduction of shoot density should drive any changes of biomass and productivity of C. nodosa as depth increases. The processes by which this reduction of C. nodosa abundance with depth occur remain to be elucidated.  相似文献   

13.
We examined in situ the density dependent effects of an infaunal suspension-feeding bivalve, Austrovenus stutchburyi (hereafter Austrovenus) on sandflat nutrient fluxes and microphytobenthic (MPB) production. Nine experimental plots (0.64 m− 2) were established at two locations separated by 300 m. Ambient fauna was left intact and Austrovenus added to plots creating a density range from 20 to 2000 ind. m− 2. Three weeks later, light and dark benthic chambers (area = 0.114 m− 2) were deployed to measure MPB production and nutrient fluxes. Austrovenus density was positively correlated with organic content and porosity but did not affect other sediment properties (grain size, pigment content) or resident macrofauna. In dark chambers there was a net influx of oxygen (O2) into the sediments which increased with Austrovenus density (from − 0.45 to − 1.21 mmol m− 2 h− 1) whereas in light chambers there was a net efflux from the sediments which decreased with density (from 0.90 to 0.31 mmol m− 2 h− 1). Significant (p < 0.01) multiple linear regression models explained respectively 42% and 72% of the variability in the dark and light chamber O2 fluxes with Austrovenus density as the most important predictor variable. When the effects of significant co-variables (light intensity, grain size) were accounted for, the negative relationship between O2 flux and Austrovenus density was less steep in light chambers (ANCOVA p < 0.001) suggesting a stimulation of MPB production at higher densities. Estimates of gross MPB primary production indicated a 30% increase in rates of carbon fixation with Austrovenus density (from 36 to 48 mg C m− 2 h− 1). Ammonium (NH4+) was released from the sediments in both light and dark chambers and increased with Austrovenus density by a factor of 5.9-6.9×. Multiple linear regression models were significant for light and dark chambers (p < 0.001; r2 86-87%) with Austrovenus again as the most important variable influencing fluxes. ANCOVA results (p < 0.001) indicated that in dark chambers NH4+ efflux increased with Austrovenus density at a rate 1.76× greater than in light chambers. These results indicate that the greater efflux of NH4+ at high densities was being trapped by photosynthesising MPB at the sediment-water interface supporting higher rates of primary production. Our results suggest that a reduction in Austrovenus density will lower nutrient fluxes potentially influencing system productivity by reducing MPB production.  相似文献   

14.
One of the largest contiguous seagrass ecosystems in the world is located on the shallow continental shelf adjacent to the west coast of Florida, USA and is comprised of seasonally ephemeral Halophila decipiens meadows. Little is known about the demography of the west Florida shelf H. decipiens, which may produce 4.56 × 108 g C day−1 or more during the peak growing season. We documented seagrass distribution, biomass, and productivity, and density of sediment seed reserves, seedlings, flowers and fruits on the southeastern portion of the west Florida shelf by sampling along a transect at three stations in 10, 15, and 20 m water depth. Biomass, flower, fruit, seedling, and seed bank densities tended to be highest at stations in 10–15 m water depth and lowest at 20 m. Flowers and fruit were most prevalent during summer cruises (June and August 1999, July 2000). Seedling germination occurred during summer, fall (October 1999), and winter (January 2000) sampling events, with the highest seedling densities present during the winter. Seed bank density remained consistent through time. A Category I hurricane with sustained winds of 120 km h−1 passed over the stations, but only limited impact on H. decipiens biomass was observed. The presence of a persistent seed bank provides for recovery after storm disturbance, annual reestablishment of populations, and continual maintenance of the 20,000 km2 of deep water seagrass habitat present on the west Florida shelf.  相似文献   

15.
The luminostat regime has been proposed as a way to maximize light absorption and thus to increase the microalgae photosynthetic efficiency within photobioreactors. In this study, simulated outdoor light conditions were applied to a lab-scale photobioreactor in order to evaluate the luminostat control under varying light conditions. The photon flux density leaving the reactor (PFDout) was varied from 4 to 20 μmol photons m−2 s−1and the productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed.Maximal volumetric productivity (1.22 g kg−1 d−1) and biomass yield on PAR photons (400-700 nm) absorbed (1.27 g mol−1) were found when PFDout was maintained between 4 and 6 μmol photons m−2 s−1. The resultant photosynthetic efficiency was comparable to that already reported in a chemostat-controlled reactor. A strict luminostat regime could not be maintained under varying light conditions. Further modifications to the luminostat control are required before application under outdoor conditions.  相似文献   

16.
Batch cultivations were performed to evaluate the influence of phosphate concentrations (0.25, 0.5, 0.75, and 1.0 g L−1) for pH regimes (9.5, 10.0, and 10.5) on the biomass production by Spirulina platensis. The best condition for cell growth (3.099 g L−1) was found at 0.5 g L−1 phosphate and pH value of 10.0. Cultivation time, phosphate, and pH caused to increase significantly (p < 0.01) in biomass production by S. platensis. Lag time was observed up to 4 h. After then, biomass production increased sharply (p < 0.01) from 0.020 g L−1 to 2.063, 2.213, 1.532, and 0.797 g L−1 at 0.25, 0.5, 0.75, and 1.0 g L−1 phosphate values, respectively. Modified Gompertz model could be regarded as sufficient to describe the biomass production by S. platensis with high determination coefficients and low sum of square value indicated that. Biological parameters for biomass production were successfully predicted by modified Gompertz model.  相似文献   

17.
This work examined the energy return of Chlorella vulgaris and Dunaliella tertiolecta cultivated in a gas-sparged photobioreactor design where the power input for sparging was manipulated (10, 20, and 50 W m−3). Dry weight, organic carbon and heating values of the biomass were measured, plus a suite of variables including Fv/Fm and dissolved oxygen. A model for predicting the higher heating value of microalgal biomass was developed and used to measure the energetic performance of batch cultivations. High power inputs enhanced maximum biomass yields, but did not improve the energy return. Cultivation in 10 W m−3 showed up to a 39% higher cumulative net energy return than 50 W m−3, and increased the cumulative net energy ratio up to fourfold. The highest net energy ratio for power input was 19.3 (D. tertiolecta, 12% CO2, 10 W m−3). These systems may be a sustainable method of biomass production, but their effectiveness is sensitive to operational parameters.  相似文献   

18.
The genus Enterococcus belong to the genera of bacteria that produce lactic acid and can confer health benefits to living organisms. Selenium (Se) is an essential micronutrient for humans and animals. Thirty-six Enterococcus species isolated from dairy products were screened for Se(IV) sorption capacity for use as a probiotics in animal nutrition. Several isolates grew luxuriantly and significantly removed Se(IV) from Se(IV) amended medium. Two isolates, LAB 14 and LAB 18, identified by 16S rRNA gene sequence analysis as Enterococcus faecalis (98% nucleotide sequence similarity) and Enterococcus faecium (97% nucleotide sequence similarity), respectively, were selected for further studies. The two isolates grew optimally and removed selenium at initial pH 7.0. Optimum removal of Se(IV) from the medium was recorded at 25 °C. Time course studies showed that after 8 h of incubation LAB 14 and LAB 18 cultures displayed the highest biomass production and Se(IV) bioremoval and most selenite in culture depleted in 24 h. At initial concentrations of 10 mg L−1 and 60 mg L−1, E. faecium (LAB 18) removed 9.91 mg L−1 and 59.70 mg L−1, respectively after 24 h. Similar Se(IV) bioremoval capacity was recorded with E. faecalis (LAB 14). Substantial amount of Se was detected in biomass of E. faecium (0.4599 mg g−1 of dry weight) and E. faecalis (0.4759 mg g−1 of dry weight). The significant uptake and transformation of Se(IV) by the Enterococcus species observed in this study suggest that they can be used to deliver dietary Se through feed augmentation with Se(IV)-enriched Enterococcus biomass.  相似文献   

19.
Fluxes of oxygen, inorganic nitrogen (DIN) and denitrification (isotope pairing) were measured from January 1997 to February 1998 via intact cores incubation in a shallow brackish area within the eutrophic Valli di Comacchio (northern Adriatic coast, Italy). Rates were measured in the light and in the dark in sediments colonized by the rooted macrophyte Ruppia cirrhosa and in adjacent sediments with benthic microalgae. Ruppia biomass (25-414 g DW m− 2) exhibited a seasonal evolution whilst that of microphytobenthos (12-66 mg chl a m− 2) was more erratic. Net (NP) and gross (GP) primary productivity was 1.15 and 6.89 mol C m− 2y− 1 for bare and 25.4 and 51.7 mol C m− 2y− 1 for Ruppia vegetated sediments. Nitrogen pools in Ruppia standing stock varied from 43.6 to 631.4 (annual average 201.2) mmol N m− 2; the macrophyte N content was correlated with DIN concentration in the water column. Estimated N pool in microphytobenthos was one order of magnitude lower (from 2.4 to 14.5 mmol N m− 2, annual average 7.2). Theoretical DIN assimilation calculated from NP was 127.8 and 1112.6 mmol N m− 2y− 1 whilst that calculated from GP was 765 and 2282 mmol N m− 2y− 1 for microphytobenthos and Ruppia respectively. Measured annual fluxes of DIN were 974.6 and − 577 mmol N m− 2y− 1 in bare and Ruppia vegetated sediments meaning that the two sites were a source and sink for DIN and that from 25 to 50% of Ruppia annual DIN requirements came from the water column. During the period of this study total denitrification was lower in the macrophyte colonized (92.3 mmol N m− 2y− 1) compared to bare sediments (163.3 mmol N m− 2y− 1) as a probable consequence of higher competition between denitrifiers and phanerogams. At both sites the ratio between denitrification of water column nitrate (DW) and denitrification coupled to nitrification (DN) was >1.6 due to little oxygen penetration in reducing sediments (< 1.2 mm) and scarce nitrification activity. DW (0-35 µmol N m− 2h− 1) was significantly correlated with water column NO3−  (2-16 µM). Theoretical DIN assimilation to denitrification ratio varied from 12.0 to 24.8 for Ruppia vegetated and from 0.8 to 4.7 for unvegetated sediments.At Valle Smarlacca, Ruppia may influence nitrogen cycling by incorporating large DIN pools in biomass which is scattered in surrounding areas and fuels intense bacterial activity. With increasing anthropogenic nutrient input and insignificant organic matter export in the open sea the already severe eutrophic conditions are enhanced and may accelerate the decline of the macrophyte meadow.  相似文献   

20.
Two laboratory-scale expanded granular sludge bed (EGSB) anaerobic bioreactors (R1 and R2) were inoculated with biomass from different mesophilic (37 °C) treatment plants, and used for the treatment of an organic solvent-based wastewater at 9–14 °C at applied organic loading rates (OLRs) of 1.2–3.6 kg chemical oxygen demand (COD) m−3 d−1. Replicated treatment performance was observed at 10–14 °C, which suggested the feasibility of the process at pilot-scale. Stable and efficient COD removal, along with high methane productivity, was demonstrated at 9 °C at an applied OLR of 2.4 kg COD m−3 d−1. Clonal libraries and fluorescence in situ hybridization (FISH) indicated that the seed sludges were dominated (>60%) by acetoclastic Methanosaeta-like organisms. Specific methanogenic activity (SMA) profiles indicated shifts in the physiological profiles of R1 and R2 biomass, including the development of psychrotolerant methanogenic activity. Acetoclastic methanogenesis represented the primary route of methane production in R1 and R2, which is in contrast with several previous reports from low-temperature bioreactor trials. A reduction in the abundance of Methanosaeta-like clones (R2), along with the detection of hydrogenotrophic methanogenic species, coincided with altered granule (sludge) morphology and the development of hydrogenotrophic SMA after prolonged operation at 9 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号