首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capability of the mammalian brain to generate new neurons through the lifespan has gained much attention for the promise of new therapeutic possibilities especially for the aging brain. One of the brain regions that maintains a neurogenesis‐permissive environment is the dentate gyrus of the hippocampus. Here, new neurons are generated from a pool of multipotent neural progenitor cells to become fully functional neurons that are integrated into the brain circuitry. A growing body of evidence points to the fact that neurogenesis in the adult hippocampus is necessary for certain memory processes, and in mood regulation, while alterations in hippocampal neurogenesis have been associated with a myriad of neurological and psychiatric disorders. More recently, evidence has come to light that new neurons may differ in their vulnerability to environmental and disease‐related influences depending on the time during the life course at which they are exposed. Thus, it has been the topic of intense research in recent years. In this review, we will discuss the complex process and associated functional relevance of hippocampal neurogenesis during the embryonic/postnatal period and in adulthood. We consider the implications of hippocampal neurogenesis during the developmentally critical periods of adolescence and older age. We will further consider the literature surrounding hippocampal neurogenesis and its functional role during these critical periods with a view to providing insight into the potential of harnessing neurogenesis for health and therapeutic benefit.  相似文献   

2.
This article is part of a Special Issue “Estradiol and Cognition”.There are sex differences in hippocampus-dependent cognition and neurogenesis suggesting that sex hormones are involved. Estrogens modulate certain forms of spatial and contextual memory and neurogenesis in the adult female rodent, and to a lesser extent male, hippocampus. This review focuses on the effects of sex and estrogens on hippocampal learning, memory, and neurogenesis in the young and aged adult rodent. We discuss how factors such as the type of estrogen, duration and dose of treatment, timing of treatment, and type of memory influence the effects of estrogens on cognition and neurogenesis. We also address how reproductive experience (pregnancy and mothering) and aging interact with estrogens to modulate hippocampal cognition and neurogenesis in females. Given the evidence that adult hippocampal neurogenesis plays a role in long-term spatial memory and pattern separation, we also discuss the functional implications of regulating neurogenesis in the hippocampus.  相似文献   

3.
Research over the last 5 years has firmly established that learning and memory abilities, as well as mood, can be influenced by diet, although the mechanisms by which diet modulates mental health are not well understood. One of the brain structures associated with learning and memory, as well as mood, is the hippocampus. Interestingly, the hippocampus is one of the two structures in the adult brain where the formation of newborn neurons, or neurogenesis, persists. The level of neurogenesis in the adult hippocampus has been linked directly to cognition and mood. Therefore, modulation of adult hippocampal neurogenesis (AHN) by diet emerges as a possible mechanism by which nutrition impacts on mental health. In this study, we give an overview of the mechanisms and functional implications of AHN and summarize recent findings regarding the modulation of AHN by diet.  相似文献   

4.
The adult hippocampus is one of the primary neural structures involved in memory formation. In addition to synapse-specific modifications thought to encode information at the subcellular level, changes in the intrahippocampal neuro-populational activity and dynamics at the circuit-level may contribute substantively to the functional capacity of this region. Within the hippocampus, the dentate gyrus has the potential to make a preferential contribution to neural circuit modification owing to the continuous addition of new granule cell population. The integration of newborn neurons into pre-existing circuitry is hypothesized to deliver a unique processing capacity, as opposed to merely replacing dying granule cells. Recent studies have begun to assess the impact of hippocampal neurogenesis by examining the extent to which adult-born neurons participate in hippocampal networks, including when newborn neurons become engaged in ongoing network activity and how they modulate circuit dynamics via their unique intrinsic physiological properties. Understanding the contributions of adult neurogenesis to hippocampal function will provide new insight into the fundamental aspects of brain plasticity, which can be used to guide therapeutic interventions to replace neural populations damaged by disease or injury.  相似文献   

5.
The mammalian hippocampus, a center of neurogenesis in the adult brain, is involved in critical functions such as learning and memory processing. Although there is an overall functional conservation between birds and mammals in the hippocampal region of the brain, there are several morphological differences. A few different models have been proposed for identifying regional and structural homology between the avian and mammalian hippocampus however a consensus is yet to be reached. In this study we have systematically and comprehensively characterized the developing chicken hippocampus at the molecular level. We have identified the time window of neurogenesis and apoptosis during hippocampal development as well as the likely origin and migration path of neurons of the ventral v-shaped region of chick hippocampus. In addition to this we have identified several genes with expression patterns that are conserved between the hippocampus of chicken and mice. Our study provides molecular data that partially supports one of the models reported in literature for structural homology between the avian and mammalian hippocampus. Functional characterization of the genes found in this study to be specifically expressed in the developing chicken hippocampus is likely to provide valuable information on the mechanisms regulating hippocampus development of birds and perhaps could be extrapolated to mammalian hippocampus development as well.  相似文献   

6.
The dentate gyrus of the hippocampus is one of the few regions of the mammalian brain where new neurons are generated throughout adulthood. This adult neurogenesis has been proposed as a novel mechanism that mediates spatial memory. However, data showing a causal relationship between neurogenesis and spatial memory are controversial. Here, we developed an inducible transgenic strategy allowing specific ablation of adult-born hippocampal neurons. This resulted in an impairment of spatial relational memory, which supports a capacity for flexible, inferential memory expression. In contrast, less complex forms of spatial knowledge were unaltered. These findings demonstrate that adult-born neurons are necessary for complex forms of hippocampus-mediated learning.  相似文献   

7.
Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis.  相似文献   

8.
9.
To examine the in vivo function of presenilin-1 (PS1), we selectively deleted the PS1 gene in excitatory neurons of the adult mouse forebrain. These conditional knockout mice were viable and grew normally, but they exhibited a pronounced deficiency in enrichment-induced neurogenesis in the dentate gyrus. This reduction in neurogenesis did not result in appreciable learning deficits, indicating that addition of new neurons is not required for memory formation. However, our postlearning enrichment experiments lead us to postulate that adult dentate neurogenesis may play a role in the periodic clearance of outdated hippocampal memory traces after cortical memory consolidation, thereby ensuring that the hippocampus is continuously available to process new memories. A chronic, abnormal clearance process in the hippocampus may conceivably lead to memory disorders in the mammalian brain.  相似文献   

10.
Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP) signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.  相似文献   

11.
12.
The brain of many species including humans, harbors stem cells that continue to generate new neurons up into adulthood. This form of structural plasticity occurs in a limited number of brain regions, i.e. the subventricular zone and the hippocampal dentate gyrus and is regulated by environmental and hormonal factors. In this minireview, we provide an overview of the effects of stress and glucocorticoid hormones on adult hippocampal neurogenesis and discuss how these effects may be relevant for cognitive function and possibly, brain disease. While its exact functional role remains elusive, adult neurogenesis has been implicated in learning and memory, fear and mood regulation and recently, adult-born neurons were found to be involved in specific cognitive functions such as pattern separation (i.e. the ability to form unique memory representations) and cognitive flexibility. The process of adult neurogenesis is influenced by several factors; whereas e.g. exercise stimulates, exposure to stress and stress hormones generally inhibit neurogenesis. Effects of acute, mild stress are generally short-lasting and recover quickly, but chronic or severe forms of stress can induce lasting reductions in adult neurogenesis. Some of the inhibitory effects of stress can be rescued by exercise, by allowing a period of recovery from stress, by drugs that target the stress system, or by some, but not all, antidepressants. Stress may, partly through its effects on adult neurogenesis, alter structure and plasticity of the hippocampal circuit. This can lead to subsequent changes in stress responsivity and aspects of memory processing, which may be particularly relevant for stress related psychopathology or brain diseases that involve perturbed memory processing.  相似文献   

13.
Adult neurogenesis in the dentate gyrus of the hippocampal formation has been implicated in several forms of hippocampus-dependent memory. However, its role in the persistence of remote memory is unknown. Furthermore, whether the hippocampus plays a role in maintaining remote contextual memories is controversial. Here we used an inducible gene-specific approach for conditional deletion of erk5 in the adult neurogenic regions of the mouse brain to specifically impair adult neurogenesis. The erk5 gene was conditionally deleted under three different experimental conditions: prior to training for contextual fear, 6 days after training, or 5 weeks after training, We present evidence that remote memory was impaired under all three conditions. These data demonstrate that ongoing adult neurogenesis is required both for the initial establishment and the continued maintenance of remote contextual fear memory, even after the remote memory has transferred into extra-hippocampal regions of the brain 5 weeks after training.  相似文献   

14.
The hippocampus is crucial for higher brain functions, such as learning, memory, and emotion. Many diseases like epilepsy and Down's syndrome are associated with abnormalities in early hippocampal development. In addition, adult dentate neurogenesis is thought to be defective in several classes of psychiatric disorders. However, the mechanisms regulating hippocampal development and adult neurogenesis remain unclear. One of the limitations to studying these processes is the scarcity of available specific mouse tools. Here, we report an inducible transgenic Cre mouse line, Frizzled 9‐CreER?, in which tamoxifen administration induces Cre recombinant. Our data show that Cre is expressed in the developing hippocampal primordium, confined to the granule cell layer at P20 and further limited to the subgranular zone in the adult dentate gyrus. Cre recombinase shows very high activity in all of these regions. Thus, this transgenic line will be a powerful tool in understanding the mechanisms of hippocampal development, adult neurogenesis, and associated diseases. genesis 49:919–926, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Neurogenesis, the generation of new neurons from neural precursor cells (NPCs), is a multi-step process that includes the proliferation of NPCs, fate determination, migration, and neuronal maturation. Neurogenesis is regulated by several extrinsic factors,such as enriched environment, physical exercise, hormones and stress, many of which also induce the expression of neurotrophins.In this review, we summarize studies on the role of neurotrophins in neurogenesis during development and in adults.We discuss the functional significance of neurogenesis in learning and memory, and how neurotrophins regulate this process.In this context, we describe recent experiments linking adult neurogenesis to long-term synaptic plasticity in the hippocampal dentate gyrus. Further study of the relationship between neurotrophins, adult neurogenesis and dentate synaptic plasticity might provide new insights into the mechanisms by which gene-environment interactions control cognition and brain plasticity.  相似文献   

16.
The ability to discriminate and store similar inputs as distinct representations in memory is thought to rely on a process called pattern separation in the dentate gyrus of the hippocampus. Recent computational and empirical findings support a role for adult-born granule neurons in spatial pattern separation. We reviewed rodent studies that have manipulated both hippocampal adult neurogenesis and assessed pattern separation. The majority of studies report a supporting role of adult born neurons in pattern separation as measured at the behavioral level. However, closer evaluation of the published findings reveals variation in both pattern separation tasks and in the interpretation of behavioral performance that, taken together, suggests that the role of hippocampal adult neurogenesis in pattern separation may be less established than is currently assumed. Assessment of pattern separation at the network level through the use of immediate early gene expression, optogenetic, pharmacogenetic and/or in vivo electrophysiology studies could be instrumental in further confirming a role of adult born neurons in pattern separation further. Finally, hippocampal adult neurogenesis and pattern separation are not an exclusive pair, as evidence for hippocampal adult neurogenesis contributing to the temporal separation of events in memory, forgetting and cognitive flexibility has also been found. We conclude that whereas current empirical evidence for the involvement of hippocampal adult neurogenesis in pattern separation seems supportive, there is a need for careful interpretation of behavioral findings and an integration of the various proposed functions of adult born neurons.  相似文献   

17.
Recent studies have shown that the precursor of nerve growth factor (proNGF) is highly elevated in aging brains and in the brains of patients with Alzheimer’s Disease. proNGF accumulates in hippocampus which is an important neurogenic region related to learning and memory. However, it remains unclear whether proNGF has an influence on hippocampal neurogenesis. In this study, we demonstrated that the high-affinity receptor of proNGF, p75 neurotrophic factor (p75NTR), was expressed both on cells undergoing mitosis and postmitotic mature cells in mouse hippocampus. proNGF infusion into adult mouse hippocampus significantly reduced the density of BrdU-incorporating cells and the density of BrdU/Doublecortin double positive cells in the subgranular zone of hippocampus, indicating an inhibitory effect of proNGF on hippocampal neurogenesis. proNGF infusion also induced prominent cell apoptosis and activated residential astrocyte and microglia, which might further impair the hippocampal neurogenesis. These results implied that proNGF played a pivotal role in regulating the hippocampal neurogenesis and might account for the memory deficit and cognitive impairment.  相似文献   

18.
The dentate gyrus (DG) and the olfactory bulb (OB) are two regions of the adult brain in which new neurons are integrated daily in the existing networks. It is clearly established that these newborn neurons are implicated in specific functions sustained by these regions and that different factors can influence neurogenesis in both structures. Among these, life events, particularly occurring during early life, were shown to profoundly affect adult hippocampal neurogenesis and its associated functions like spatial learning, but data regarding their impact on adult bulbar neurogenesis are lacking. We hypothesized that prenatal stress could interfere with the development of the olfactory system, which takes place during the prenatal period, leading to alterations in adult bulbar neurogenesis and in olfactory capacities. To test this hypothesis we exposed pregnant C57Bl/6J mice to gestational restraint stress and evaluated behavioral and anatomic consequences in adult male offspring.We report that prenatal stress has no impact on adult bulbar neurogenesis, and does not alter olfactory functions in adult male mice. However, it decreases cell proliferation and neurogenesis in the DG of the hippocampus, thus confirming previous reports on rats. Altogether our data support a selective and cross-species long-term impact of prenatal stress on neurogenesis.  相似文献   

19.
In the adult mammalian brain, neuroblasts are continuously produced within the subgranular zone of the hippocampus and the subventricular zone (SVZ) of the forebrain. In this review we describe how some physiological and environmental factors play important roles in regulating neurogenesis in the hippocampus. Neuroblasts in the SVZ network migrate rostrally into the olfactory bulb where they differentiate into local interneurons. We focus on the production, survival and functional consequences of these newly generated interneurons. We show that enriched odor-exposure enhances the number of newborn neurons in the adult olfactory bulb but not in the hippocampus. This effect did not result from changes in cell proliferation but rather was due to greater neuronal survival. Furthermore, the enriched condition was found to dramatically extend the olfactory memory. By maintaining a constitutive turnover of interneurons subjected to regulation by bulbar activity, ongoing neurogenesis plays a key role in olfactory memory.  相似文献   

20.
成年海马中神经发生及影响因素   总被引:1,自引:0,他引:1  
动物成年后在其中枢神经系统内仍有神经发生。成年神经发生的主要区域是海马齿状回的颗粒下层和脑室下区的侧脑室外侧壁。目前认为成年后的海马神经发生参与记忆的形成,尤其对癫痫和神经退行性疾病的缓解和治疗具有重要意义。成年海马的神经发生受多种生理、病理因素的调控。我们就近年来成年海马神经发生的影响因素及其可能机制进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号