首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Up a notch: instructing gliogenesis   总被引:9,自引:0,他引:9  
Wang S  Barres BA 《Neuron》2000,27(2):197-200
  相似文献   

3.
Neuronal differentiation: proneural genes inhibit gliogenesis   总被引:2,自引:0,他引:2  
  相似文献   

4.
Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis. In summary, we have identified two major pathways that control perineural and cortex gliogenesis in the post-embryonic brain and have shown that the molecular circuitry required is lineage specific.  相似文献   

5.
6.
7.
8.
Wnt signaling plays an essential role in the development of mammalian central nervous system. We investigated the impact of activation/inhibition of the Wnt signaling pathway on neuronal/glial differentiation in neurospheres derived from neonatal mouse forebrains. For short term alterations, neurospheres were stimulated with recombinant Wnt-3a, Wnt-5a and the Wnt inhibitor Dickkopf-1 (Dkk1). Furthermore, neurospheres were transduced with retroviral vectors encoding Wnt-3a, Wnt-7a and their inhibitors Dkk1 and soluble Frizzled related protein-5 (sFRP5). Long-term activation of Wnt pathway by Wnt-7a or by treatment with GSK3 inhibitors promoted a moderate increase of the neuronal differentiation and blocked gliogenesis. In contrast, Wnt pathway inhibition in neurospheres, induced by retroviral overexpression of either Dkk1 or sFRP5, robustly increased the gliogenesis at the expense of neurogenesis. In summary, our data demonstrate that activation or inhibition of Wnt/β-catenin signaling in neurospheres regulates neuronal and glial differentiation, respectively. Thus, our results suggest that Wnt signaling may also contribute to regulate these processes in the neonatal brain.  相似文献   

9.
Interleukin-6 and neural stem cells: more than gliogenesis   总被引:1,自引:0,他引:1  
  相似文献   

10.
Neural stem cells (NSCs) are subscribed extraordinary potential in repair of the damaged nervous system. However, the molecular identity of NSCs has not been established. Most NSC cultures contain large numbers of multipotent, bipotent, and lineage restricted neural progenitors, the majority of which appear to lose neurogenic potential after expansion. This review first discusses the neurogenic to gliogenic switch that is characteristic of progenitor development in vivo and in NSC cultures, and then the cell intrinsic and extrinsic mechanisms regulating the sequential differentiation of neurons and glia. Finally, we discuss potential methods for maintaining the neurogenic potential of NSC cultures after expansion.  相似文献   

11.
The genesis of vertebrate peripheral ganglia poses the problem of how multipotent neural crest stem cells (NCSCs) can sequentially generate neurons and then glia in a local environment containing strong instructive neurogenic factors, such as BMP2. Here we show that Notch ligands, which are normally expressed on differentiating neuroblasts, can inhibit neurogenesis in NCSCs in a manner that is completely dominant to BMP2. Contrary to expectation, Notch activation did not maintain these stem cells in an uncommitted state or promote their self-renewal. Rather, even a transient activation of Notch was sufficient to cause a rapid and irreversible loss of neurogenic capacity accompanied by accelerated glial differentiation. These data suggest that Notch ligands expressed by neuroblasts may act positively to instruct a cell-heritable switch to gliogenesis in neighboring stem cells.  相似文献   

12.
13.
There is a growing recognition, stemming from work with both vertebrates and invertebrates, that the capacity for neuronal regeneration is critically dependent on the local microenvironment. That environment is largely created by the non-neuronal elements of the nervous system, the neuroglia. Therefore an understanding of how glial cells respond to injury is crucial to understanding neuronal regeneration. Here we examine the process of repair in a relatively simple nervous system, that of the insect, in which it is possible to define precisely the cellular events of the repair process. This repair is rapid and well organised; it involves the recruitment of blood cells, the division of endogenous glial elements and, possibly, migration from pre-existing glial pools in adjacent ganglia. There are clear parallels between the events of repair and those of normal glial development. It seems likely that the ability of the insect central nervous system to repair resides in the retention of developmental capacities throughout its life and that damage results in the activation of this potential.  相似文献   

14.
Brg1 is required for murine neural stem cell maintenance and gliogenesis   总被引:3,自引:0,他引:3  
Epigenetic alterations in cell-type-specific gene expression control the transition of neural stem cells (NSCs) from predominantly neurogenic to predominantly gliogenic phases of differentiation, but how this switch occurs is unclear. Here, we show that brahma-related gene 1 (Brg1), an ATP-dependent chromatin remodeling factor, is required for the repression of neuronal commitment and the maintenance of NSCs in a state that permits them to respond to gliogenic signals. Loss of Brg1 in NSCs in conditional brg1 mutant mice results in precocious neuronal differentiation, such that cells in the ventricular zone differentiate into post-mitotic neurons before the onset of gliogenesis. As a result, there is a dramatic failure of astrocyte and oligodendrocyte differentiation in these animals. The ablation of brg1 in gliogenic progenitors in vitro also prevents growth-factor-induced astrocyte differentiation. Furthermore, proteins implicated in the maintenance of stem cells, including Sox1, Pax6 and Musashi-1, are dramatically reduced in the ventricular zones of brg1 mutant mice. We conclude that Brg1 is required to repress neuronal differentiation in NSCs as a means of permitting glial cell differentiation in response to gliogenic signals, suggesting that Brg1 regulates the switch from neurogenesis to gliogenesis.  相似文献   

15.
Precursor cells of the embryonic cortex sequentially generate neurons and then glial cells, but the mechanisms regulating this neurogenic-to-gliogenic transition are unclear. Using cortical precursor cultures, which temporally mimic this in vivo differentiation pattern, we demonstrate that cortical neurons synthesize and secrete the neurotrophic cytokine cardiotrophin-1, which activates the gp130-JAK-STAT pathway and is essential for the timed genesis of astrocytes in vitro. Our data indicate that a similar phenomenon also occurs in vivo. In utero electroporation of neurotrophic cytokines in the environment of embryonic cortical precursors causes premature gliogenesis, while acute perturbation of gp130 in cortical precursors delays the normal timed appearance of astrocytes. Moreover, the neonatal cardiotrophin-1-/- cortex contains fewer astrocytes. Together, these results describe a neural feedback mechanism; newly born neurons produce cardiotrophin-1, which instructs multipotent cortical precursors to generate astrocytes, thereby ensuring that gliogenesis does not occur until neurogenesis is largely complete.  相似文献   

16.
17.
The Gal4-UAS technique has been used to misexpress a constitutively active Notch receptor variant (notch1a-intra) in the developing zebrafish retina. This is the first study to use this technique to misexpress genes and assess their function in neural development of the zebrafish. Expression of activated Notch1a either ubiquitously, driven by a heat-shock70 promoter, or in a spatially regulated manner, controlled by the deltaD promoter, causes a block in neuronal differentiation that affects all cell types. Developing cells take on either a glial fate or remain undifferentiated. A large number of cells eventually undergo apoptosis. These phenotypic effects of activated Notch1a are expressed cell autonomously. Cells within central regions of the retina adopt a glial fate if they express activated Notch1a in a time window that extends from 27 to 48 hours postfertilization. This period corresponds mainly to the time of origin of ganglion cells in the normal retina. Activation of notch1a at later stages results in defects in cell type specification that remain restricted to the ciliary marginal zone, whereas neuronal types are specified normally within the central region. These observations indicate that glial differentiation is initiated by Notch1a-intra expressing cells, which become postmitotic in the same time window. Our results strongly suggest that Notch1a instructs a certain cell population to enter gliogenesis, and keeps the remaining cells in an undifferentiated state. Some or all of these cells will eventually succumb to apoptosis.  相似文献   

18.
19.
Neural stem/progenitor cells in the neurogenic niches of the adult brain are widely assumed to give rise predominantly to neurons, rather than glia. Here, we performed a quantitative analysis of the resident neural progenitors and their progeny in the adult pacemaker nucleus (Pn) of the weakly electric fish Apteronotus leptorhynchus. Approximately 15% of all cells in this brainstem nucleus are radial glia‐like neural stem/progenitor cells. They are distributed uniformly within the tissue and are characterized by the expression of Sox2 and Meis 1/2/3. Approximately 2–3% of them are mitotically active, as indicated by expression of proliferating cell nuclear antigen. Labeling of proliferating cells with a single pulse of BrdU, followed by chases of up to 100 days, revealed that new cells are generated uniformly throughout the nucleus and do not undergo substantial migration. New cells differentiate into S100+ astrocytes and Hu C/D+ small interneurons at a ratio of 4:1, reflecting the proportions of the total glia and neurons in this brain region. The continuous addition of new cells leads to a diffuse growth of the Pn, which doubles in volume and total cell number over the first 2 years following sexual maturation of the fish. However, the number of pacemaker and relay cells, which constitute the oscillatory neural network, remains constant throughout adult life. We hypothesize that the dominance of gliogenesis is an adaptation to the high‐frequency firing of the oscillatory neurons in this nucleus. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 934–952, 2014  相似文献   

20.
Constitutive activation of the Notch pathway can promote gliogenesis by peripheral (PNS) and central (CNS) nervous system progenitors. This raises the question of whether physiological Notch signaling regulates gliogenesis in vivo. To test this, we conditionally deleted Rbpsuh (Rbpj) from mouse PNS or CNS progenitors using Wnt1-Cre or Nestin-Cre. Rbpsuh encodes a DNA-binding protein (RBP/J) that is required for canonical signaling by all Notch receptors. In most regions of the developing PNS and spinal cord, Rbpsuh deletion caused only mild defects in neurogenesis, but severe defects in gliogenesis. These resulted from defects in glial specification or differentiation, not premature depletion of neural progenitors, because we were able to culture undifferentiated progenitors from the PNS and spinal cord despite their failure to form glia in vivo. In spinal cord progenitors, Rbpsuh was required to maintain Sox9 expression during gliogenesis, demonstrating that Notch signaling promotes the expression of a glial-specification gene. These results demonstrate that physiological Notch signaling is required for gliogenesis in vivo, independent of the role of Notch in the maintenance of undifferentiated neural progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号