首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zebrafish is an ideal organism for small molecule studies. The ability to use the whole organism allows complex in vivo phenotypes to be assayed and combines animal testing with screening. Embryos are easily treatable by waterborne exposure. The small size and abundance of embryos make zebrafish suitable for screening in a high-throughput manner in 96- or 48-well plates. Zebrafish embryos have successfully been used in chemical genetic screens to elucidate biological pathways and find chemical suppressors. Small molecules discovered by screening zebrafish disease models may also be useful as lead compounds for drug development as there appears to be a high level of conservation of drug activity between mammals and zebrafish. Here we provide the technical aspects of treating embryos with small molecules and performing chemical screens with zebrafish.  相似文献   

2.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.  相似文献   

3.
4.
Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals.  相似文献   

5.
6.
Zebrafish have long been utilized to study the cellular and molecular mechanisms of development by time-lapse imaging of the living transparent embryo. Here we describe a method to mount zebrafish embryos for long-term imaging and demonstrate how to automate the capture of time-lapse images using a confocal microscope. We also describe a method to create controlled, precise damage to individual branches of peripheral sensory axons in zebrafish using the focused power of a femtosecond laser mounted on a two-photon microscope. The parameters for successful two-photon axotomy must be optimized for each microscope. We will demonstrate two-photon axotomy on both a custom built two-photon microscope and a Zeiss 510 confocal/two-photon to provide two examples.Zebrafish trigeminal sensory neurons can be visualized in a transgenic line expressing GFP driven by a sensory neuron specific promoter 1. We have adapted this zebrafish trigeminal model to directly observe sensory axon regeneration in living zebrafish embryos. Embryos are anesthetized with tricaine and positioned within a drop of agarose as it solidifies. Immobilized embryos are sealed within an imaging chamber filled with phenylthiourea (PTU) Ringers. We have found that embryos can be continuously imaged in these chambers for 12-48 hours. A single confocal image is then captured to determine the desired site of axotomy. The region of interest is located on the two-photon microscope by imaging the sensory axons under low, non-damaging power. After zooming in on the desired site of axotomy, the power is increased and a single scan of that defined region is sufficient to sever the axon. Multiple location time-lapse imaging is then set up on a confocal microscope to directly observe axonal recovery from injury. Open in a separate windowClick here to view.(76M, flv)  相似文献   

7.
The zebrafish (Danio rerio) is a popular animal model used for studies on vertebrate development and organogenesis. Recent research has shown a similarity of approximately 70% between the human and zebrafish genomes and about 84% of human disease‐causing genes have common ancestry with that of the zebrafish genes. Zebrafish embryos have a number of desirable features, including transparency, a large size, and rapid embryogenesis. Protein phosphorylation is a well‐known PTM, which can carry out various biological functions. Recent MS developments have enabled the study of global phosphorylation patterns by using MS‐based proteomics coupled with titanium dioxide phosphopeptide enrichment. In the present study, we identified 3500 nonredundant phosphorylation sites on 2166 phosphoproteins and quantified 1564 phosphoproteins in developing embryos of zebrafish. The distribution of Ser/Thr/Tyr phosphorylation sites in zebrafish embryos was found to be 88.9, 10.2, and 0.9%, respectively. A potential kinase motif was predicted using Motif‐X analysis, for 80% of the identified phosphorylation sites, with the proline‐directed motif appearing most frequently, and 35 phosphorylation sites having the pSF motif. In addition, we created six phosphoprotein clusters based on their dynamic pattern during the development of zebrafish embryos. Here, we report the largest dataset of phosphoproteins in zebrafish embryos and our results can be used for further studies on phosphorylation sites or phosphoprotein dynamics in zebrafish embryos.  相似文献   

8.
Zebrafish is a powerful vertebrate model system for studying development, modeling disease, and performing drug screening. Recently a variety of genetic tools have been introduced, including multiple strategies for inducing mutations and generating transgenic lines. However, large-scale screening is limited by traditional genotyping methods, which are time-consuming and labor-intensive. Here we describe a technique to analyze zebrafish genotypes by PCR combined with high-resolution melting analysis (HRMA). This approach is rapid, sensitive, and inexpensive, with lower risk of contamination artifacts. Genotyping by PCR with HRMA can be used for embryos or adult fish, including in high-throughput screening protocols.  相似文献   

9.
Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis.  相似文献   

10.
斑马鱼整体原位杂交的技术改良   总被引:2,自引:0,他引:2  
斑马鱼整体原位杂交技术广泛应用于基因表达谱、基因间相互关系和突变体筛选等方面,是研究斑马鱼发育相关基因功能的重要技术。本文从杂交探针的制备、浓度的选择和洗脱以及胚胎的脱色、蛋白酶K消化、底物显色等方面进行了摸索、改进及简化,获得了背景低、着色清晰、特异性高的实验结果,预示了简单实用、成本低廉的斑马鱼整胚原位杂交技术平台的成功建立。  相似文献   

11.
12.
Zebrafish have recently become a model of choice among developmental biologists. This unique model enables both modern molecular and genetic studies to be carried out to identify genes involved in a wide variety of developmental processes. The success of the genetic approach depends largely on the application of an easy and effective screening method to identify interesting mutants. In order to develop a method for visualizing skeletal structures in zebrafish embryos that would be suitable for screening skeletal mutants, we investigated the use of the fluorescent chromophore calcein, which binds specifically to calcified skeletal structures. By using this method, we followed the development of the skeletal structures in zebrafish embryos from day 1 to day 21 postfertilization, and analyzed the effect of bone morphogenetic protein-2 (BMP2) on axial skeleton development. We found the development of the calcified skeletal structure to appear in a progressive fashion from head to tail. Calcified structures in the head (i.e., the jaw) developed first, which were then followed by the axial skeleton in the trunk. Interesting to note was that there appeared to be two domains in the calcification of vertebrae within the axial skeleton. The first three vertebrae were in the first domain; the rest being in the second domain. Compared with Alcian blue staining, we found that calcein staining indeed labels calcified skeletal structures, and, moreover, it is a more sensitive and inclusive method for visualizing skeletal structures. To determine whether calcein staining could also be used to detect abnormal bone development, we ectopically expressed BMP2 in zebrafish notochord cells. We demonstrated that ectopic expression of BMP2 in notochord cells inhibited the development of the axial skeleton. Together, these results clearly demonstrated the sensitivity of calcein staining for visualizing bone structures in developing zebrafish embryos and its effectiveness for screening for mutants that have bone structure defects.  相似文献   

13.
Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults.  相似文献   

14.
Zebrafish (Danio rerio) and their transparent embryos are becoming an increasingly popular tool for studying processes involved in tumor progression and in the search for novel tumor treatment approaches. The xenotransplantation of fluorescently labeled mammalian cancer cells into zebrafish embryos is an approach enabling relatively high-throughput in vivo analyses. The small size of the embryos as well as the relative simplicity of their manipulation and maintenance allow for large numbers of embryos to be processed efficiently in a short time and at low cost. Furthermore, the possibility of fluorescence microscopic imaging of tumor progression within zebrafish embryos and larvae holds unprecedented potential for the real-time visualization of these processes in vivo. This review presents the methodologies of xenotransplantation studies on zebrafish involving research on tumor invasion, proliferation, tumor-induced angiogenesis and screening for antitumor therapeutics. We further focus on the application of these zebrafish to the study of glioma; in particular, its most common and malignant form, glioblastoma.  相似文献   

15.
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism.  相似文献   

16.
Zebrafish embryos are a powerful tool for large-scale screening of small molecules. Transgenic zebrafish that express fluorescent reporter proteins are frequently used to identify chemicals that modulate gene expression. Chemical screens that assay fluorescence in live zebrafish often rely on expensive, specialized equipment for high content screening. We describe a procedure using a standard epifluorescence microscope with a motorized stage to automatically image zebrafish embryos and detect tissue-specific fluorescence. Using transgenic zebrafish that report estrogen receptor activity via expression of GFP, we developed a semi-automated procedure to screen for estrogen receptor ligands that activate the reporter in a tissue-specific manner. In this video we describe procedures for arraying zebrafish embryos at 24-48 hours post fertilization (hpf) in a 96-well plate and adding small molecules that bind estrogen receptors. At 72-96 hpf, images of each well from the entire plate are automatically collected and manually inspected for tissue-specific fluorescence. This protocol demonstrates the ability to detect estrogens that activate receptors in heart valves but not in liver.  相似文献   

17.
Zebrafish models have significantly contributed to our understanding of vertebrate development and, more recently, human disease. The growing number of genetic tools available in zebrafish research has resulted in the identification of many genes involved in developmental and disease processes. In particular, studies in the zebrafish have clarified roles of the p53 tumor suppressor in the formation of specific tumor types, as well as roles of p53 family members during embryonic development. The zebrafish has also been instrumental in identifying novel mechanisms of p53 regulation and highlighting the importance of these mechanisms in vivo. This article will summarize how zebrafish models have been used to reveal numerous, important aspects of p53 function.The zebrafish, Danio rerio, is a small model organism that has long been used to study vertebrate development. Zebrafish embryos are optically clear and develop externally to the mother, facilitating the study of early developmental processes. In addition, zebrafish have increasingly been used in modeling human diseases, including a number of cancers. The availability of forward and reverse genetic tools in the zebrafish has resulted in the identification and characterization of many genes involved in development and disease. One gene that has been extensively studied is the p53 tumor suppressor gene, which is structurally and functionally conserved in the zebrafish. This article will discuss how studies in the zebrafish have increased our understanding of how p53 contributes to the formation of specific tumor types, resulted in the identification of novel mechanisms of p53 regulation, and showed how p53 and p53 family members are involved in embryonic development.  相似文献   

18.
Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10–1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish.  相似文献   

19.
Local abnormal angiogenesis and cardiovascular system reorganization have been observed in embryos exposed to a simulated microgravity (SM) environment. In this study, changes in key molecular signals and pathways in cardiovascular development have been investigated under microgravity conditions. In particular, the caudal vein plexus (CVP) network, formed by sprouting angiogenesis has been chosen. Zebrafish embryos were exposed to SM using a ground-based microgravity bioreactor for 24 and 36 h. The SM was observed to have no effect on the zebrafish length, tail width and incubation time whereas it was observed to significantly reduce the heart rate frequency and to promote abnormal development of the CVP network in the embryos. Nitric oxide (NO) content demonstrated that the total proteins in zebrafish embryos were significantly higher in SM than in the control group grown under normal conditions. It was then preliminarily determined how NO signals were involved in SM regulated zebrafish CVP network formation. nos2b MO was injected and CVP network evolution was observed in 36 h post fertilization (hpf) under SM condition. The results showed that the CVP network formation was considerably decreased in the nos2b MO treated group. However, this inhibition of the CVP network development was not observed in control MO group, indicating that nos2b is involved in the SM-regulated vascular development process in zebrafish. Moreover, specific phosphoinositide 3-kinase (PI3K) inhibitors such as LY294002 were also tested on zebrafish embryos under SM condition. This treatment significantly inhibited the formation of zebrafish CVP network. Furthermore, overexpression of nos2b partly rescued the LY294002-caused CVP network failure. Therefore, it can be concluded that SM affects zebrafish CVP network remodeling by enhancing angiogenesis. Additionally, the PI3K-nos2b signaling pathway is involved in this process.  相似文献   

20.
Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号