首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ABC of binding-protein-dependent transport in Archaea   总被引:1,自引:0,他引:1  
The recent solution of the crystal structure of an entire binding-protein-dependent ABC transporter complex from the archaeon Archaeoglobus fulgidus by Locher and his colleagues marks a milestone in the understanding of the ABC transport mechanism. The structure elegantly demonstrates how the motor ATPase alternately opens and closes the inside and outside pores of the transporter and how the substrate-binding protein delivers its substrate. Binding-protein-dependent sugar ABC transporters in the archaea and in bacteria have an additional feature that could connect ABC transporters to gene regulation and to the control of transport activity by cellular processes.  相似文献   

2.
Although it is known for long time that the peripheral nervous system has the capacity for self-regeneration, the molecular mechanisms by which Schwann cells and extracellular matrix (ECM) guide the injured axons to regrow along their original path, remains a poorly understood process. Due to the importance of ECM molecules during development, constitutive mutant organisms display increased lethality, therefore, conditional or inducible strategies have been used to increase the survival of the organisms and allow the study of the role of ECM proteins. In a recent report published in Neuron, Isaacman-Beck and colleagues (2015) used these pioneering genetic studies on zebrafish combined with in vivo fluorescent imaging, to investigate the micro-environmental conditions required for targeted regeneration of the dorsal motor nerve of zebrafish larvae after laser-transection. A candidate gene approach targeting lh3 basal laminar collagen substrates revealed that the lh3 substrate col4α5 regulates dorsal nerve regeneration by destabilizing misdirected axons. Col4α5 was upregulated in a small population of lh3 expressing Schwann cells located ventrally and ventro-laterally to the injury site and found to co-localize with the molecule slit guidance ligand 1 (slit1a). Capitalizing on the crucial observations of mistargeted regeneration of dorsal nerves in mutant larvae, they put forward a model in which Schwann cells shape an environment that allows and directs axonal regeneration to their original synaptic target. In the light of Isaacman-Beck and colleagues (2015) findings, we will review how their study contributes to the research field, and comment on its potential implications for promoting nerve regeneration after injury.  相似文献   

3.
Cytoplasmic dynein, the 1.2 MDa motor driving minus-end-directed motility, has been reported to move processively along microtubules, but its mechanism of motility remains poorly understood. Here, using S. cerevisiae to produce recombinant dynein with a chemically controlled dimerization switch, we show by structural and single-molecule analysis that processivity requires two dynein motor domains but not dynein's tail domain or any associated subunits. Dynein advances most frequently in 8 nm steps, although longer as well as side and backward steps are observed. Individual motor domains show a different stepping pattern, which is best explained by the two motor domains shuffling in an alternating manner between rear and forward positions. Our results suggest that cytoplasmic dynein moves processively through the coordination of its two motor domains, but its variable step size and direction suggest a considerable diffusional component to its step, which differs from Kinesin-1 and is more akin to myosin VI.  相似文献   

4.
Motile kinesins are motor proteins that move unidirectionally along microtubules as they hydrolyze ATP. They share a conserved motor domain (head) which harbors both the ATP‐ and microtubule‐binding activities. The kinesin that has been studied most moves toward the microtubule (+)‐end by alternately advancing its two heads along a single protofilament. This kinesin is the subject of this review. Its movement is associated to alternate conformations of a peptide, the neck linker, at the C‐terminal end of the motor domain. Recent progress in the understanding of its structural mechanism has been made possible by high‐resolution studies, by cryo electron microscopy and X‐ray crystallography, of complexes of the motor domain with its track protein, tubulin. These studies clarified the structural changes that occur as ATP binds to a nucleotide‐free microtubule‐bound kinesin, initiating each mechanical step. As ATP binds to a head, it triggers orientation changes in three rigid motor subdomains, leading the neck linker to dock onto the motor core, which directs the other head toward the microtubule (+)‐end. The relationship between neck linker docking and the orientations of the motor subdomains also accounts for kinesin's processivity, which is remarkable as this motor protein only falls off from a microtubule after taking about a hundred steps. As tools are now available to determine high‐resolution structures of motor domains complexed to their track protein, it should become possible to extend these studies to other kinesins and relate their sequence variations to their diverse properties.  相似文献   

5.
Graziano MS 《Neuron》2011,71(3):387-388
An exciting new experiment on the motor cortex of monkeys, by Shenoy and colleagues, begins to elucidate how the neuronal ensemble travels in a systematic fashion through state space. This trajectory through state space may help to explain how the motor cortex sets up and then triggers arm movements.  相似文献   

6.
Bremmer F 《Neuron》2001,31(1):6-7
Our actions, and those of others, are often partly obscured from view. This complicates the sensory inputs that guide motor actions. In this issue of Neuron, Umilità and colleagues demonstrate that "mirror neurons" in ventral premotor cortex respond when monkeys observe hidden, but inferred, actions.  相似文献   

7.
This paper reexamines the gill morphometrics of 20 European teleosts first reported in the early gill literature by Byczkowska-Smyk and colleagues in attempt to clarify the long-recognized discrepancies between these data and those obtained in subsequent works. Determination of gill dimensions for the pikeperch, Sander lucioperca, in this study (a species for which Byczkowska-Smyk reported data), along with a literature review for other European teleosts, reveals inaccurate estimation of the total gill surface area by up to 18× for 19 of the 20 species reexamined. This error results primarily from imprecise determination of the bilateral surface area of individual gill lamellae and, to a lesser extent, the incorrect assumption that lamellar area and frequency are species-specific constants that do not vary with fish body mass. This review compiles gill morphometric data from various sources to be used in place of the inaccurate gill area estimates of Byczkowska-Smyk and colleagues and thereby clears the way for higher resolution in the comparative analysis of gill morphology and its correlation to fish habitat and life history characteristics.  相似文献   

8.
The ability of the malaria parasite to invade erythrocytes is central to the disease process, but is not thoroughly understood. In particular, little attention has been paid to the motor systems driving invasion. Here, Jennifer Pinder, Ruth Fowler and colleagues review motility in the merozoite. The components of an actomyosin motor are present, including a novel unconventional class XIV myosin, now called Pfmyo-A, which, because of its time of synthesis and location, is likely to generate the force required for invasion. In addition, there is a subpellicular microtubule assemblage in falciparum merozoites, the f-MAST, the integrity of which is necessary for invasion.  相似文献   

9.
Sanes JN  Truccolo W 《Neuron》2003,38(1):3-5
In this issue of Neuron, Jackson and colleagues describe a functional correlate of neural synchrony related to movement control. Synchrony strength in cortico-motoneuronal output neurons in primary motor cortex depended upon similarity of these neurons' connectivity pattern with the spinal cord. These results could form the foundation for subsequent investigations of motor binding.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease characterized by rapid degeneration of and loss of function in the motor cortex, brain stem, and spinal cord, particularly the anterior horn cells. Since the pioneering work of Brown and colleagues, more than 100 mutations in Cu,Zn superoxide dismutase (SOD1) have been described (P. Pasinelli, R. H. Brown, Nat. Rev. Neurosci.7, 710-723, 2006). There are toxic gain-of-function alterations in SOD1, because the enzymatic activity of this protein is not different in ALS from that of controls. The paper by Butterfield and colleagues reporting the use of redox proteomics to identify oxidatively modified proteins in the spinal cord in the G93A-SOD1 mouse model of familial amyotrophic lateral sclerosis was identified by the SCOPUS science literature information system to be one of the top 20 downloaded papers for 2005-2006 in Free Radical Biology and Medicine. Here my thoughts on the importance and impact of this paper are reported.  相似文献   

11.
Most of the transport along the nephron uses membrane proteins and exhibits the three characteristics of mediated transport: saturation, specificity, and competition. Glucose reabsorption in the nephron is an excellent example of the consequences of saturation. Two classic papers by James A. Shannon and colleagues clearly show the ability of the kidney in transporting glucose and its saturation process, providing students with examples of the handling of glucose by the kidney. In addition, these articles demonstrate how stable and reproducible is the transport maximum of glucose in the proximal tubule under different experimental conditions. One key figure from each classic paper can be used to give students insight into how glucose transport becomes saturated, resulting in the excretion of glucose in urine, and will also give students a clear example of how careful experimentation and a clear interest in renal physiology led Shannon and colleagues to advance the field.  相似文献   

12.
13.
Bargh et al. (2001) reported two experiments in which people were exposed to words related to achievement (e.g., strive, attain) or to neutral words, and then performed a demanding cognitive task. Performance on the task was enhanced after exposure to the achievement related words. Bargh and colleagues concluded that better performance was due to the achievement words having activated a "high-performance goal". Because the paper has been cited well over 1100 times, an attempt to replicate its findings would seem warranted. Two direct replication attempts were performed. Results from the first experiment (n = 98) found no effect of priming, and the means were in the opposite direction from those reported by Bargh and colleagues. The second experiment followed up on the observation by Bargh et al. (2001) that high-performance-goal priming was enhanced by a 5-minute delay between priming and test. Adding such a delay, we still found no evidence for high-performance-goal priming (n = 66). These failures to replicate, along with other recent results, suggest that the literature on goal priming requires some skeptical scrutiny.  相似文献   

14.
Cilia have diverse roles in motility and sensory reception and their dysfunction contributes to cilia-related diseases. Assembly and maintenance of cilia depends on the intraflagellar transport (IFT) of axoneme, membrane, matrix and signalling proteins to appropriate destinations within the organelle. In the current model, these diverse cargo proteins bind to multiple sites on macromolecular IFT particles, which are moved by a single anterograde IFT motor, kinesin-II, from the ciliary base to its distal tip, where cargo-unloading occurs. Here, we describe the observation of fluorescent IFT motors and IFT particles moving along distinct domains within sensory cilia of wild-type and IFT-motor-mutant Caenorhabditis elegans. We show that two anterograde IFT motor holoenzymes, kinesin-II and Osm-3-kinesin, cooperate in a surprising way to control two pathways of IFT that build distinct parts of cilia. Instead of each motor independently moving its own specific cargo to a distinct destination, the two motors function redundantly to transport IFT particles along doublet microtubules adjacent to the transition zone to form the axoneme middle segment. Next, Osm-3-kinesin alone transports IFT particles along the distal singlet microtubules to stabilize the distal segment. Thus, the subtle coordinate activity of these IFT motors creates two sequential transport pathways.  相似文献   

15.
Despite evidence implicating the Polycomb group protein, Eed (embryonic ectoderm development protein) in imprinted X inactivation, a similar role in random X inactivation in the embryo has remained an open question. Brockdorff and colleagues now report that Eed, along with its binding partner Enx1, transiently associates with the inactive X chromosome (Xi) and likely contributes to the epigenetic signature and long-term stability of the Xi heterochromatin.  相似文献   

16.
Many molecular motors move unidirectionally along a DNA strand powered by nucleotide hydrolysis. These motors are multimeric ATPases with more than one hydrolysis site. We present here a model for how these motors generate the requisite force to process along their DNA track. This novel mechanism for force generation is based on a fluctuating electrostatic field driven by nucleotide hydrolysis. We apply the principle to explain the motion of certain DNA helicases and the portal protein, the motor that bacteriophages use to pump the genome into their capsids. The motor can reverse its direction without reversing the polarity of its electrostatic field, that is, without major structural modifications of the protein. We also show that the motor can be driven by an ion gradient; thus the mechanism may apply as well to the bacterial flagellar motor and to ATP synthase.  相似文献   

17.
Klein R 《Cell》2005,121(1):4-6
Cells communicate with other cells via (trans) interaction between membrane-linked ephrins and Eph receptors. In this issue of Cell, Pfaff and colleagues (Marquardt et al., 2005) demonstrate that coexpressed ephrin-As and Ephs do not interact in cis but rather segregate into separate membrane domains, from which they signal opposing effects during motor axon guidance.  相似文献   

18.
The heterotrimeric motor protein, kinesin-II, and its presumptive cargo, can be observed moving anterogradely at 0.7 microm/s by intraflagellar transport (IFT) within sensory cilia of chemosensory neurons of living Caenorhabditis elegans, using a fluorescence microscope-based transport assay (Orozco, J.T., K.P. Wedaman, D. Signor, H. Brown, L. Rose, and J.M. Scholey. 1999. Nature. 398:674). Here, we report that kinesin-II, and two of its presumptive cargo molecules, OSM-1 and OSM-6, all move at approximately 1.1 microm/s in the retrograde direction along cilia and dendrites, which is consistent with the hypothesis that these proteins are retrieved from the distal endings of the cilia by a retrograde transport pathway that moves them along cilia and then dendrites, back to the neuronal cell body. To test the hypothesis that the minus end-directed microtubule motor protein, cytoplasmic dynein, drives this retrograde transport pathway, we visualized movement of kinesin-II and its cargo along dendrites and cilia in a che-3 cytoplasmic dynein mutant background, and observed an inhibition of retrograde transport in cilia but not in dendrites. In contrast, anterograde IFT proceeds normally in che-3 mutants. Thus, we propose that the class DHC1b cytoplasmic dynein, CHE-3, is specifically responsible for the retrograde transport of the anterograde motor, kinesin-II, and its cargo within sensory cilia, but not within dendrites.  相似文献   

19.
de Lafuente V  Romo R 《Neuron》2002,36(5):785-786
Sensory perception has traditionally been attributed to the activation of sensory cortices. However, by inducing an illusory perception of movement, Naito and colleagues show in this issue of Neuron that the illusory perception of movement is related to activation of primary motor cortex.  相似文献   

20.
An experiment using a multisensor SQUID (superconducting quantum interference device) array was performed by Kelso and colleagues (1992) which combined information from three different sources: perception, motor response, and brain signals. When an acoustic stimulus frequency is changed systematically, a spontaneous transition in coordination occurs at a critical frequency in both motor behavior and brain signals. Qualitatively analogous transitions are known for physical and biological systems such as changes in the coordination of human hand movements (Kelso 1981, 1984). In this paper we develop a theoretical model based on methods from the interdisciplinary field of synergetics (Haken 1983, 1987) and nonlinear oscillator theory that reproduces the main experimental features very well and suggests a formulation of a fundamental biophysical coupling. Received: 8 September 1993  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号