首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been reported that mammalian serum, and to a lower extent mammalian liver, brain, pancreas, udder, and milk, contain glycosylphosphatidylinositolspecific phospholipase D activity. However, the sites of synthesis have not been determined. In order to study in which cells(s) of the organism synthesis of glycosylphosphatidylinositol-specific phospholipase D takes place, we undertook a systematic screening of 12 different bovine tissues. In situ hybridization experiments with a specific anti-sense RNA probe, derived from a bovine liver cDNA, revealed that glycosylphosphatidylinositol-specific phospholipase D mRNA is present in mast cells of the adrenal gland, lung, and liver. On the other hand, our specific probe detected no mRNA in bovine pancreas, brain, and udder, although enzyme activity has been reported in these tissues. Northern blot analysis of total bovine liver RNA demonstrated two distinct glycosylphosphatidylinositol-specific phospholipse D mRNAs of approximately 3.3 kb and 4 kb length suggesting that two forms of the enzyme may exist.  相似文献   

2.
The phospholipase C (PLC) pathway is the major signaling mechanism of photoactivation in invertebrate photoreceptors. Here we report the cloning of a cDNA encoding a 140-kDa retinal PLC that is uniquely expressed in squid photoreceptors. This cDNA encodes a protein with multiple distinct modular domains: PH, X and Y catalytic, and C2 domains, as well as G- and P-box motifs and two GTP/ATP binding motifs. The PLC was stimulated by activated squid Gq alpha but not by squid Gq beta gamma or mammalian beta gamma subunits. The PLC was inhibited by monophosphate, diphosphate and triphosphate nucleotides but not cyclic nucleosides. We also tested the ability of PLC-140 to regulate the GTPase activity of Gq alpha in the rhabdomeric membranes. Depletion of PLC-140 from the rhabdomeric membranes decreased the GTP hydrolysis but not GTP gamma S binding to the membranes. Reconstitution of purified PLC-140 with membranes accelerated Gq alpha GTPase activity by fivefold at a concentration of 2.5 microM. Our data suggest that PLC-140 plays an important role in both the activation and inactivation pathways of invertebrate visual transduction.  相似文献   

3.
Sequence analysis of a inositol-phospholipid-specific phospholipase C (PtdIns-PLC) purified from bovine brain has led to the isolation of a novel cDNA that encodes this protein. While this cDNA contains two introns, these appear to be removed upon transfection of the cDNA into COS-1 cells. The protein transiently expressed in COS-1 cells shows phosphatidylinositol 4,5-bisphosphate hydrolysing activity which distributes preferentially into the particulate fraction. Comparison of the predicted amino acid sequence of this PtdIns-PLC with other known PtdIns-PLCs reveals a high degree of similarity, throughout all of its sequence, with PtdIns-PLC delta. Thus, we believe that the identification of this cDNA represents evidence for multiple functional-gene products within the delta subclass of PtdIns-PLCs.  相似文献   

4.
The coupling of various agonist receptors to the hydrolysis of phosphoinositides has generated much interest in the nature of the phospholipase C that is activated. Here we report the purification of a bovine brain phospholipase C derived from the particulate fraction. A 1000-fold purification was achieved by a combination of heparin-Sepharose, DEAE-cellulose and gel-permeation chromatography. The purified enzyme appears to be monomeric and under denaturing conditions shows a single staining major polypeptide of molecular mass 154 kDa in SDS gels. The enzyme is specific for phosphoinositides although it shows a marked preference for the polyphosphoinositides. With phosphatidylinositol 4,5-bisphosphate as substrate the enzyme expresses a specific activity of greater than 100 mumol min-1 mg-1. The phospholipase C is activated by Ca2+ (0.1-10 microM). The behaviour of this particulate enzyme is discussed in the context of a agonist-induced phosphatidylinositol hydrolysis.  相似文献   

5.
6.
7.
8.
The B subunit is one of two nucleotide-binding polypeptides found in all members of the vacuolar class of H(+)-translocating ATPases. We have isolated aDNA clone encoding the bovine brain B (58 kDa) subunit and have deduced its amino acid sequence. The bovine brain amino acid sequence is 99% identical to a partial cDNA reported from human brain. Northern blot analysis of RNA isolated from bovine tissues and a bovine kidney cell line reveals that two messages of approximately 3.2 and 2.0 kilobases (kb) are expressed in all tissues examined except brain, where only the 3.2-kb message can be detected. Northern blotting of RNA isolated from human fibroblast and human lung tumor cell lines reveals that three messages of approximately 6.0, 3.2, and 2.0 kb are expressed, whereas only the 3.2-kb message is expressed in a human brain tumor cell line. This is the first demonstration of tissue-specific expression of multiple forms of a vacuolar H(+)-ATPase subunit. We have also isolated a partial cDNA clone from bovine brain which appears to encode an isoform of the B subunit. The deduced amino acid sequence is 82% identical to the major bovine brain B subunit sequence; it does not hybridize with either the 3.2- or 2.0-kb message on Northern blot. Southern blot analysis of bovine genomic DNA with probes derived from both isolated cDNAs indicates that the bovine B subunit is encoded by a multigene family.  相似文献   

9.
10.
11.
12.
The availability of purified G alpha 11 and the G-protein-regulated phospholipase C from turkey erythrocytes has allowed an examination of the direct effects of G-protein beta gamma-subunit on the components of the inositol lipid signaling system. Reconstitution of purified turkey erythrocyte or bovine brain beta gamma-subunit into phospholipid vesicles containing G alpha 11 inhibited AlF4- induced activation of phospholipase C. However, beta gamma-subunit at higher concentrations increased phospholipase C activity. This stimulatory effect of beta gamma-subunit on phospholipase C did not require the presence of the alpha-subunit. G alpha o had no effect on the catalytic activity of phospholipase C. However, coreconstitution of G alpha o and beta gamma-subunit shifted to the right the concentration-effect curve for beta gamma-subunit-promoted activation of phospholipase C. As was observed with G alpha 11, the increase in activity observed in the presence of beta gamma-subunit occurred as an increase in the maximal activity and with no change in the apparent affinity for Ca2+ for phospholipase C activation. The concentration dependence of G alpha 11 for activation of turkey erythrocyte phospholipase C and bovine brain phospholipase C-beta, as well as the concentration dependence of the two enzymes for activation by G alpha 11, were very similar. In contrast, beta gamma-subunit was a much less effective activator of bovine brain phospholipase C-beta than the turkey erythrocyte enzyme. The observation of direct effects of free beta gamma-subunit on phospholipase C extend the possibilities for receptor-mediated regulation of this signaling pathway.  相似文献   

13.
14.
The epidermal growth factor receptor (EGFR) is a key driver in the process of squamous cell carcinoma (SCC) cell mitogenesis. Phospholipase C-γ1 (PLC-γ1) is a downstream target of EGFR signaling, but the role and necessity of PLC-γ1 in EGFR-induced cell mitogenesis remain unclear. In the present study, we report an elevated expression of PLC-γ1 in human SCC biopsies relative to adjacent normal epidermis, and in human SCC cell lines compared to normal human keratinocytes. EGFR-induced SCC cell mitogenesis was blocked by small interfering RNA knockdown of PLC-γ1. However, inhibition of the catalytic activity of phospholipase C had no effect on EGFR-induced SCC cell mitogenesis. In response to the EGFR ligand epidermal growth factor (EGF), PLC-γ1 was translocated not only to the plasma membrane but also to the nucleus. These data suggest that PLC-γ1 is required for EGFR-induced SCC cell mitogenesis and the mitogenic function of PLC-γ1 is independent of its lipase activity.  相似文献   

15.
16.
In this communication, we demonstrate that adult mammalian brain neurons express transforming growth factor-alpha (TGF-alpha). We used the anti-TGF-alpha monoclonal antibody, MF9, to immunohistochemically localize TGF-alpha in human and rat brain. We found specific immunoreactivity in neurons throughout the brain which was not a result of cross-reactivity of MF9 with the neuropeptide, synenkephalin. Northern blot analysis of bovine and rat brain RNA using human and rat TGF-alpha cDNA probes, respectively, revealed a single 4.8-kilobase pair mRNA with approximately equal abundance in the bovine brainstem, cerebellum, hypothalamus, and cerebral cortex. Fetal rat brain had about 2-fold more TGF-alpha mRNA than did adult rat. The brain TGF-alpha cDNA was cloned from a human neonatal brainstem library. Four identical clones were isolated after screening 10(6) recombinant lambda gt11 phage. The sequence of the 894-base pair cDNA was virtually identical with the cDNA isolated from a human renal cell carcinoma. A single alanine codon was deleted in the brain cDNA at an exon-exon junction. The alanine deletion is within the amino-terminal region of the TGF-alpha precursor that is thought to be removed by proteolytic processing of the precursor to the mature growth factor. These studies indicate that the normal mammalian brain neurons express TGF-alpha.  相似文献   

17.
Phospholipase C-γ1 (PLC-γ1), a tyrosine kinase substrate, has been implicated in the pathway for the epidermal growth factor receptor (EGFR)-induced cell migration. However, the underlying mechanism by which PLC-γ1 mediates EGFR-induced cell migration remains elusive. In the present study, we sought to determine whether the lipase activity of PLC-γ1 is required for EGFR-induced cell migration. We found that overexpression of PLC-γ1 in squamous cell carcinoma SCC4 cells markedly enhanced EGF-induced PLC-γ1 activation, intracellular calcium rise, and cell migration. This enhancement was abolished by mutational inactivation of the catalytic domain of PLC-γ1. Inhibition of the downstream signaling processes mediated by the activity of phospholipase C (PLC) using IP3 receptor inhibitor or intracellular calcium chelator blocked EGF-induced cell migration. These data indicate that EGF-induced cell migration is mediated by the lipase domain of PLC-γ1 and the subsequent IP3 generation and intracellular calcium mobilization.  相似文献   

18.
19.
20.
We have previously demonstrated that the 73-kDa (A) subunit of the bovine coated vesicle (H+)-ATPase possesses a nucleotide binding site required for catalytic activity (Arai, H., Berne, M., Terres, G., Terres, H., Puopolo, K., and Forgac, M. (1987) Biochemistry 26, 6632-6638). Here we report the cDNA sequence of the coding region of the bovine brain A subunit. Comparison of the deduced amino acid sequence with those previously reported for the A subunits of vacuolar ATPases from lower eukaryotes, plants, and archaebacteria reveals significant homology, especially in sequences implicated in nucleotide binding. The message encoding the bovine brain A subunit is relatively large, approximately 4.6 kilobases; Northern blotting of RNA isolated from rat brain and human brain tumor cells reveals a message of similar size. Northern analysis of several bovine tissues indicates that only one message for this subunit is expressed. Southern blot analysis of bovine genomic DNA indicates that the bovine A subunit is encoded by a single gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号