首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of dynamic protein phosphorylation events is critical for understanding kinase/phosphatase‐regulated signaling pathways. To date, protein phosphorylation and kinase expression have been examined independently in photosynthetic organisms. Here we present a method to study the global kinome and phosphoproteome in tandem in a model photosynthetic organism, the alga Chlamydomonas reinhardtii (Chlamydomonas), using mass spectrometry‐based label‐free proteomics. A dual enrichment strategy targets intact protein kinases via capture on immobilized multiplexed inhibitor beads with subsequent proteolytic digestion of unbound proteins and peptide‐based phosphorylation enrichment. To increase depth of coverage, both data‐dependent and data‐independent (via SWATH, Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra) mass spectrometric acquisitions were performed to obtain a more than 50% increase in coverage of the enriched Chlamydomonas kinome over coverage found with no enrichment. The quantitative phosphoproteomic dataset yielded 2250 phosphopeptides and 1314 localized phosphosites with excellent reproducibility across biological replicates (90% of quantified sites with coefficient of variation below 11%). This approach enables simultaneous investigation of kinases and phosphorylation events at the global level to facilitate understanding of kinase networks and their influence in cell signaling events.  相似文献   

2.
Protein kinases have emerged as attractive targets for treatment of several diseases prompting large-scale phosphoproteomics studies to elucidate their cellular actions and the design of novel inhibitory compounds. Current limitations include extensive reliance on consensus predictions to derive kinase-substrate relationships from phosphoproteomics data and incomplete experimental validation of inhibitors. To overcome these limitations in the case of protein kinase CK2, we employed functional proteomics and chemical genetics to enable identification of physiological CK2 substrates and validation of CK2 inhibitors including TBB and derivatives. By 2D electrophoresis and mass spectrometry, we identified the translational elongation factor EEF1D as a protein exhibiting CK2 inhibitor-dependent decreases in phosphorylation in (32)P-labeled HeLa cells. Direct phosphorylation of EEF1D by CK2 was shown by performing CK2 assays with EEF1D -FLAG from HeLa cells. Dramatic increases in EEF1D phosphorylation following λ-phosphatase treatment and phospho- EEF1D antibody recognizing EEF1D pS162 indicated phosphorylation at the CK2 site in cells. Furthermore, phosphorylation of EEF1D in the presence of TBB or TBBz is restored using CK2 inhibitor-resistant mutants. Collectively, our results demonstrate that EEF1D is a bona fide physiological CK2 substrate for CK2 phosphorylation. Furthermore, this validation strategy could be adaptable to other protein kinases and readily combined with other phosphoproteomic methods.  相似文献   

3.
Systematic discovery of in vivo phosphorylation networks   总被引:9,自引:0,他引:9  
Protein kinases control cellular decision processes by phosphorylating specific substrates. Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide mapping. However, systematically matching these sites to specific kinases is presently infeasible, due to limited specificity of consensus motifs, and the influence of contextual factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity. We have developed an approach (NetworKIN) that augments motif-based predictions with the network context of kinases and phosphoproteins. The latter provides 60%-80% of the computational capability to assign in vivo substrate specificity. NetworKIN pinpoints kinases responsible for specific phosphorylations and yields a 2.5-fold improvement in the accuracy with which phosphorylation networks can be constructed. Applying this approach to DNA damage signaling, we show that 53BP1 and Rad50 are phosphorylated by CDK1 and ATM, respectively. We describe a scalable strategy to evaluate predictions, which suggests that BCLAF1 is a GSK-3 substrate.  相似文献   

4.
Malaria parasites belong to an ancient lineage that diverged very early from the main branch of eukaryotes. The approximately 90-member plasmodial kinome includes a majority of eukaryotic protein kinases that clearly cluster within the AGC, CMGC, TKL, CaMK and CK1 groups found in yeast, plants and mammals, testifying to the ancient ancestry of these families. However, several hundred millions years of independent evolution, and the specific pressures brought about by first a photosynthetic and then a parasitic lifestyle, led to the emergence of unique features in the plasmodial kinome. These include taxon-restricted kinase families, and unique peculiarities of individual enzymes even when they have homologues in other eukaryotes. Here, we merge essential aspects of all three malaria-related communications that were presented at the Evolution of Protein Phosphorylation meeting, and propose an integrated discussion of the specific features of the parasite's kinome and phosphoproteome.  相似文献   

5.
Protein phosphorylation is associated with most cell signaling and developmental processes in eukaryotes. Despite the vast extent of the phosphoproteome within the cell, connecting specific kinases with relevant targets remains a significant experimental frontier. The challenge of linking kinases and their substrates reflects the complexity of kinase function. For example, kinases tend to exert their biological effects through supernumerary, redundant phosphorylation, often on multiple protein complex components. Although these types of phosphorylation events are biologically significant, those kinases responsible are often difficult to identify. Recent methods for global analysis of protein phosphorylation promise to substantially accelerate efforts to map the dynamic phosphorylome. Here, we review both conventional methods to identify kinase targets and more comprehensive genomic and proteomic approaches to connect the kinome and phosphorylome.  相似文献   

6.
Arsenault R  Griebel P  Napper S 《Proteomics》2011,11(24):4595-4609
Phosphorylation is the predominant mechanism of post-translational modification for regulation of protein function. With central roles in virtually every cellular process, and strong linkages with many diseases, there is a considerable interest in defining, and ultimately controlling, kinase activities. Investigations of human cellular phosphorylation events, which includes over 500 different kinases and tens of thousands of phosphorylation targets, represent a daunting challenge for proteomic researchers and cell biologists alike. As such, there is a priority to develop tools that enable the evaluation of cellular phosphorylation events in a high-throughput, and biologically relevant, fashion. Towards this objective, two distinct, but functionally related, experimental approaches have emerged; phosphoproteome investigations, which focus on the sub-population of proteins which undergo phosphorylation and kinome analysis, which considers the activities of the kinase enzymes mediating these phosphorylation events. Within kinome analysis, peptide arrays have demonstrated considerable potential as a cost-effective, high-throughput approach for defining phosphorylation-mediated signal transduction activity. In particular, a number of recent advances in the application of peptide arrays for kinome analysis have enabled researchers to tackle increasingly complex biological problems in a wider range of species. In this review, recent advances in kinomic analysis utilizing peptides arrays including several of the biological questions studied by our group, as well as outstanding challenges still facing this technology, are discussed.  相似文献   

7.
Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.  相似文献   

8.
The hepatitis C virus NS5A protein plays a critical role in virus replication, conferring interferon resistance to the virus through perturbation of multiple intracellular signaling pathways. Since NS5A is a phosphoprotein, it is of considerable interest to understand the role of phosphorylation in NS5A function. In this report, we investigated the phosphorylation of NS5A by taking advantage of 119 glutathione S-transferase-tagged protein kinases purified from Saccharomyces cerevisiae to perform a global screening of yeast kinases capable of phosphorylating NS5A in vitro. A database BLAST search was subsequently performed by using the sequences of the yeast kinases that phosphorylated NS5A in order to identify human kinases with the highest sequence homologies. Subsequent in vitro kinase assays and phosphopeptide mapping studies confirmed that several of the homologous human protein kinases were capable of phosphorylating NS5A. In vivo phosphopeptide mapping revealed phosphopeptides common to those generated in vitro by AKT, p70S6K, MEK1, and MKK6, suggesting that these kinases may phosphorylate NS5A in mammalian cells. Significantly, rapamycin, an inhibitor commonly used to investigate the mTOR/p70S6K pathway, reduced the in vivo phosphorylation of specific NS5A phosphopeptides, strongly suggesting that p70S6 kinase and potentially related members of this group phosphorylate NS5A inside the cell. Curiously, certain of these kinases also play a major role in mRNA translation and antiapoptotic pathways, some of which are already known to be regulated by NS5A. The findings presented here demonstrate the use of high-throughput screening of the yeast kinome to facilitate the major task of identifying human NS5A protein kinases for further characterization of phosphorylation events in vivo. Our results suggest that this novel approach may be generally applicable to the screening of other protein biochemical activities by mechanistic class.  相似文献   

9.
Protein kinases play important roles in almost all major signaling and regulatory pathways of eukaryotic organisms. Members in the family of protein kinases make up a substantial fraction of eukaryotic proteome. Analysis of the protein kinase repertoire (kinome) would help in the better understanding of the regulatory processes. In this article, we report the identification and analysis of the repertoire of protein kinases in the intracellular parasite Entamoeba histolytica. Using a combination of various sensitive sequence search methods and manual analysis, we have identified a set of 307 protein kinases in E. histolytica genome. We have classified these protein kinases into different subfamilies originally defined by Hanks and Hunter and studied these kinases further in the context of noncatalytic domains that are tethered to catalytic kinase domain. Compared to other eukaryotic organisms, protein kinases from E. histolytica vary in terms of their domain organization and displays features that may have a bearing in the unusual biology of this organism. Some of the parasitic kinases show high sequence similarity in the catalytic domain region with calmodulin/calcium dependent protein kinase subfamily. However, they are unlikely to act like typical calcium/calmodulin dependent kinases as they lack noncatalytic domains characteristic of such kinases in other organisms. Such kinases form the largest subfamily of kinases in E. histolytica. Interestingly, a PKA/PKG-like subfamily member is tethered to pleckstrin homology domain. Although potential cyclins and cyclin-dependent kinases could be identified in the genome the likely absence of other cell cycle proteins suggests unusual nature of cell cycle in E. histolytica. Some of the unusual features recognized in our analysis include the absence of MEK as a part of the Mitogen Activated Kinase signaling pathway and identification of transmembrane region containing Src kinase-like kinases. Sequences which could not be classified into known subfamilies of protein kinases have unusual domain architectures. Many such unclassified protein kinases are tethered to domains which are Cysteine-rich and to domains known to be involved in protein-protein interactions. Our kinome analysis of E. histolytica suggests that the organism possesses a complex protein phosphorylation network that involves many unusual kinases.  相似文献   

10.
Protein kinases are thought to mediate their biological effects through their catalytic activity. The large number of pseudokinases in the kinome and an increasing appreciation that they have critical roles in signaling pathways, however, suggest that catalyzing protein phosphorylation may not be the only function of protein kinases. Using the principle of hydrophobic spine assembly, we interpret how kinases are capable of performing a dual function in signaling. Its first role is that of a signaling enzyme (classical kinases; canonical), while its second role is that of an allosteric activator of other kinases or as a scaffold protein for signaling in a manner that is independent of phosphoryl transfer (classical pseudokinases; noncanonical). As the hydrophobic spines are a conserved feature of the kinase domain itself, all kinases carry an inherent potential to play both roles in signaling. This review focuses on the recent lessons from the RAF kinases that effectively toggle between these roles and can be “frozen” by introducing mutations at their hydrophobic spines.  相似文献   

11.
Tyrosine and serine/threonine kinases are essential regulators of cell processes and are important targets for human therapies. Unfortunately, very little is known about specific kinase-substrate relationships, making it difficult to infer meaning from dysregulated phosphoproteomic datasets or for researchers to identify possible kinases that regulate specific or novel phosphorylation sites. The last two decades have seen an explosion in algorithms to extrapolate from what little is known into the larger unknown—predicting kinase relationships with site-specific substrates using a variety of approaches that include the sequence-specificity of kinase catalytic domains and various other factors, such as evolutionary relationships, co-expression, and protein-protein interaction networks. Unfortunately, a number of limitations prevent researchers from easily harnessing these resources, such as loss of resource accessibility, limited information in publishing that results in a poor mapping to a human reference, and not being updated to match the growth of the human phosphoproteome. Here, we propose a methodological framework for publishing predictions in a unified way, which entails ensuring predictions have been run on a current reference proteome, mapping the same substrates and kinases across resources to a common reference, filtering for the human phosphoproteome, and providing methods for updating the resource easily in the future. We applied this framework on three currently available resources, published in the last decade, which provide kinase-specific predictions in the human proteome. Using the unified datasets, we then explore the role of study bias, the emergent network properties of these predictive algorithms, and comparisons within and between predictive algorithms. The combination of the code for unification and analysis, as well as the unified predictions are available under the resource we named KinPred. We believe this resource will be useful for a wide range of applications and establishes best practices for long-term usability and sustainability for new and existing predictive algorithms.  相似文献   

12.
13.
Protein phosphorylation, mediated by a family of enzymes called cyclin-dependent kinases (Cdks), plays a central role in the cell-division cycle of eukaryotes. Phosphorylation by Cdks directs the cell cycle by modifying the function of regulators of key processes such as DNA replication and mitotic progression. Here, we present a novel computational procedure to predict substrates of the cyclin-dependent kinase Cdc28 (Cdk1) in the Saccharomyces cerevisiae. Currently, most computational phosphorylation site prediction procedures focus solely on local sequence characteristics. In the present procedure, we model Cdk substrates based on both local and global characteristics of the substrates. Thus, we define the local sequence motifs that represent the Cdc28 phosphorylation sites and subsequently model clustering of these motifs within the protein sequences. This restraint reflects the observation that many known Cdk substrates contain multiple clustered phosphorylation sites. The present strategy defines a subset of the proteome that is highly enriched for Cdk substrates, as validated by comparing it to a set of bona fide, published, experimentally characterized Cdk substrates which was to our knowledge, comprehensive at the time of writing. To corroborate our model, we compared its predictions with three experimentally independent Cdk proteomic datasets and found significant overlap. Finally, we directly detected in vivo phosphorylation at Cdk motifs for selected putative substrates using mass spectrometry.  相似文献   

14.
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate‐specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C‐lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide‐substrate binding to Src using paramagnetic‐relaxation‐enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C‐terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off‐target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.  相似文献   

15.
Regulatory T cells (Treg) are essential for T cell homeostasis and maintenance of peripheral tolerance. They prevent activation of auto-reactive T effector cells (Teff) in the context of autoimmunity and allergy. Otherwise, Treg also inhibit effective immune responses against tumors. Besides a number of Treg-associated molecules such as Foxp3, CTLA-4 or GARP, known to play critical roles in Treg differentiation, activation and function, the involvement of additional regulatory elements is suggested. Herein, kinase activities seem to play an important role in Treg fine tuning. Nevertheless, our knowledge regarding the complex intracellular signaling pathways controlling phenotype and function of Treg is still limited and based on single kinase cascades so far. To gain a more comprehensive insight into the pathways determining Treg function we performed kinome profiling using a phosphorylation-based kinome array in human Treg at different activation stages compared to Teff. Here we have determined intriguing quantitative differences in both populations. Resting and activated Treg showed an altered pattern of CD28-dependent kinases as well as of those involved in cell cycle progression. Additionally, significant up-regulation of distinct kinases such as EGFR or CK2 in activated Treg but not in Teff not only resemble data we obtained in previous studies in the murine system but also suggest that those specific molecular activation patterns can be used for definition of the activation and functional state of human Treg. Taken together, detailed investigation of kinome profiles opens the possibility to identify novel molecular mechanisms for a better understanding of Treg biology but also for development of effective immunotherapies against unwanted T cell responses in allergy, autoimmunity and cancer.  相似文献   

16.

Background

Natural killer (NK) cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244) and DNAM-1 (CD226), act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome) are involved in NK cell activation.

Results

A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2), FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated.

Conclusions

The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.  相似文献   

17.
Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.  相似文献   

18.
19.
Phosphorylation by protein kinases is the most widespread and well-studied signaling mechanism in eukaryotic cells. Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Cataloging and understanding protein phosphorylation is no easy task: many kinases may be expressed in a cell, and one-third of all intracellular proteins may be phosphorylated, representing as many as 20,000 distinct phosphoprotein states. Defining the kinase complement of the human genome, the kinome, has provided an excellent starting point for understanding the scale of the problem. The kinome consists of 518 kinases, and every active protein kinase phosphorylates a distinct set of substrates in a regulated manner. Deciphering the complex network of phosphorylation-based signaling is necessary for a thorough and therapeutically applicable understanding of the functioning of a cell in physiological and pathological states. We review contemporary techniques for identifying physiological substrates of the protein kinases and studying phosphorylation in living cells.  相似文献   

20.
Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression. We hypothesized that depletion of KRAS would result in downregulation of kinases required for KRAS-mediated transformation and in upregulation of other kinases that could potentially compensate for the deleterious consequences of the loss of KRAS. We identified 15 upregulated and 13 downregulated kinases in common across the panel of cell lines. In agreement with our hypothesis, all 15 of the upregulated kinases have established roles as cancer drivers (e.g., SRC, TGF-β1, ILK), and pharmacological inhibition of one of these upregulated kinases, DDR1, suppressed PDAC growth. Interestingly, 11 of the 13 downregulated kinases have established driver roles in cell cycle progression, particularly in mitosis (e.g., WEE1, Aurora A, PLK1). Consistent with a crucial role for the downregulated kinases in promoting KRAS-driven proliferation, we found that pharmacological inhibition of WEE1 also suppressed PDAC growth. The unexpected paradoxical activation of ERK upon WEE1 inhibition led us to inhibit both WEE1 and ERK concurrently, which caused further potent growth suppression and enhanced apoptotic death compared with WEE1 inhibition alone. We conclude that system-wide delineation of the KRAS-regulated kinome can identify potential therapeutic targets for KRAS-mutant pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号