首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antiserum specific for influenza A(2) neuraminidase was produced by immunization of rabbits with the purified enzyme which had been isolated by electrophoresis from the proteins of a detergent-disrupted A(0)A(2) influenza virus recombinant [X-7 (F1)]. This recombinant contained hemagglutinin of the A(0) subtype and A(2) neuraminidase. Antiserum to the isolated A(2) neuraminidase did not react in any of four serological tests with A(0) or A(2) subtype viruses that lacked the A(2) enzyme. In contrast, the antiserum inhibited the neuraminidase activity only of wild-type and recombinant viruses containing the A(2) enzyme, regardless of the nature of their hemagglutinin proteins. The antiserum caused hemagglutination-inhibition of some, but not all, viruses bearing the A(2) enzyme, and it reduced the plaque size or plaque number of all viruses tested that contained A(2) neuraminidase. In the chick embryo and in cell culture, low dilutions of antiserum reduced the yield of virus. True neutralization of virus in the chick embryo did not occur. We conclude that an antiserum specific for A(2) neuraminidase influenced the yield and release of virus from influenza virus-infected cells.  相似文献   

2.
Antiserum to a recombinant between an A(o) and an A(2) influenza virus had no detectable antibody against an A(2) virus in standard hemagglutination-inhibition tests, and inhibited 95% of viral neuraminidase activity at a 1 to 400 dilution. However, on mixing virus with antiserum, a drop of up to 90% in hemagglutinin titer was observed. The effects of ultrasonication and direct electron microscopic examination indicated that the antiserum caused aggregation of virus particles. When antiserum was added to A(2) virus-infected chick embryo fibroblasts, release of virus appeared markedly inhibited. After ultrasonication to disrupt aggregates, an increase in released hemagglutinin was observed, but the resulting level was considerably lower than that in control cultures containing normal rabbit serum. In thin sections of infected cells, similar numbers of virus profiles were observed in control and antiserum-treated cultures. A marked increase in release of hemagglutinin was noted if receptor-destroying enzyme was added to antiserum-treated cultures. The results indicate that antibody to neuraminidase does not exert a direct effect on viral maturation, but inhibits the detachment of viral progeny from cell surface receptors.  相似文献   

3.
Avian influenza virus H9N2 is prevalent in waterfowl and has become endemic in poultry in Asia and the Middle East. H9N2 influenza viruses have served as a reservoir of internal genes for other avian influenza viruses that infect humans, and several cases of human infection by H9N2 influenza viruses have indicated its pandemic potential. Fortunately, an extensive surveillance program enables close monitoring of H9N2 influenza viruses worldwide and has generated a large repository of virus sequences and phylogenetic information. Despite the large quantity of sequences in different databases, very little is known about specific virus isolates and their pathogenesis. Here, we characterize a low-pathogenicity avian influenza virus, A/chicken/Israel/810/2001 (H9N2) (Israel810), which is representative of influenza virus strains that have caused severe morbidity and mortality in poultry farms. We show that under certain circumstances the Israel810 hemagglutinin (HA) can be activated by furin, a hallmark of highly pathogenic avian influenza virus. We demonstrate that Israel810 HA can be cleaved in cells with high levels of furin expression and that a mutation that eliminates a glycosylation site in HA1 allows the Israel810 HA to gain universal cleavage in cell culture. Pseudoparticles generated from Israel810 HA, or the glycosylation mutant, transduce cells efficiently. In contrast, introduction of a polybasic cleavage site into Israel810 HA leads to pseudoviruses that are compromised for transduction. Our data indicate a mechanism for an H9N2 evolutionary pathway that may allow it to gain virulence in a distinct manner from H5 and H7 influenza viruses.  相似文献   

4.
5.
Influenza A virus is capable of rapidly infecting large human populations, warranting the development of novel drugs to efficiently inhibit virus replication. A transmembrane ion channel formed by the M2 protein plays an important role in influenza virus replication. A reasonable approach to designing an effective antivirus drug is constructing a molecule that binds in the M2 transmembrane proton channel, blocks H+ proton diffusion through the channel, and thus the influenza A virus cycle. The known anti-influenza drugs amantadine and rimantadine have a weak effect on influenza A virus replication. A new class of positively charged molecules, diazabicyclooctane derivatives with a constant charge of +2, was proposed to block proton diffusion through the M2 ion channel. Molecular dynamics simulations were performed to study the temperature fluctuations in the M2 structure, and ionization states of histidine residues were established at physiological pH values. Two types of diazabicyclooctane derivatives were analyzed for binding with the M2 ion channel. An optimal structure was determined for a blocker to most efficiently bind with the M2 ion channel and block proton diffusion. The new molecule is advantageous over amantadine and rimantadine in having a positive charge of +2, which creates a positive electrostatic potential barrier to proton transport through the M2 ion channel in addition to a steric barrier.  相似文献   

6.
The amantadine-sensitive ion channel activity of influenza A virus M2 protein was discovered through understanding the two steps in the virus life cycle that are inhibited by the antiviral drug amantadine: virus uncoating in endosomes and M2 protein-mediated equilibration of the intralumenal pH of the trans Golgi network. Recently it was reported that influenza virus can undergo multiple cycles of replication without M2 ion channel activity (T. Watanabe, S. Watanabe, H. Ito, H. Kida, and Y. Kawaoka, J. Virol. 75:5656-5662, 2001). An M2 protein containing a deletion in the transmembrane (TM) domain (M2-del(29-31)) has no detectable ion channel activity, yet a mutant virus was obtained containing this deletion. Watanabe and colleagues reported that the M2-del(29-31) virus replicated as efficiently as wild-type (wt) virus. We have investigated the effect of amantadine on the growth of four influenza viruses: A/WSN/33; N31S-M2WSN, a mutant in which an asparagine residue at position 31 in the M2 TM domain was replaced with a serine residue; MUd/WSN, which possesses seven RNA segments from WSN plus the RNA segment 7 derived from A/Udorn/72; and A/Udorn/72. N31S-M2WSN was amantadine sensitive, whereas A/WSN/33 was amantadine resistant, indicating that the M2 residue N31 is the sole determinant of resistance of A/WSN/33 to amantadine. The growth of influenza viruses inhibited by amantadine was compared to the growth of an M2-del(29-31) virus. We found that the M2-del(29-31) virus was debilitated in growth to an extent similar to that of influenza virus grown in the presence of amantadine. Furthermore, in a test of biological fitness, it was found that wt virus almost completely outgrew M2-del(29-31) virus in 4 days after cocultivation of a 100:1 ratio of M2-del(29-31) virus to wt virus, respectively. We conclude that the M2 ion channel protein, which is conserved in all known strains of influenza virus, evolved its function because it contributes to the efficient replication of the virus in a single cycle.  相似文献   

7.
8.
We sought to investigate the cellular uptake and antiviral activity for the M1 zinc finger peptides derived from influenza A and influenza B viruses in vitro. No cellular uptake was detected by fluorescent microscopy for the synthetic zinc finger peptides. When flanked to a cell permeable peptide Tp10, the zinc finger recombinant proteins were efficiently internalized by MDCK cells. However, no antiviral activity was detected against homologous or heterologous virus infections for the synthetic peptides or the Tp10-flanked recombinant proteins, regardless treated with or without Zn2+. Nevertheless, MDCK cell constitutively expressing the M1 zinc finger peptides in cell nuclei potently inhibited replication of homologous, but not heterologous influenza viruses. Adenoviral vector delivered M1 zinc finger peptides also exhibited potent antiviral activity against homologous viruses challenge. Transduction at 100 PFU dose of recombinant adenovirus efficiently protected 99% of the cells from 100 TCID50 of different virus infections for both peptides. These results brought new insight to the antiviral researches against influenza virus infections.  相似文献   

9.
10.
Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication.  相似文献   

11.
为评价清热消炎复方制剂(简称AI)的抗流感病毒活性,我们以病毒唑为对照,通过在体外观察病毒致细胞病变效应(CPE)、MTT细胞染色检查病毒抑制率和检测病毒血凝滴度;在体内观察其对染毒小鼠的死亡保护作用,对小鼠流感病毒性肺炎的抑制作用,以及对小鼠肺内病毒增殖的影响,从而判定其抗流感病毒作用。结果发现AI在160ug/mL时能完全抑制流感病毒在MDCK细胞内的增殖复制作用。体内实验中0.1g/kg,0.5g/kg,1.2g/kg3个剂量均能明显降低染毒小鼠的致死率,延长平均存活时间:降低肺炎小鼠的肺指数和血凝滴度(P<0.01)。其作用与病毒唑相当。结论认为清热消炎复方制剂是一种有效的体内、体外抗流感病毒中药复方制剂。  相似文献   

12.
13.
A型流感病毒M2蛋白疫苗的研究进展   总被引:1,自引:0,他引:1  
郑丽舒  段招军 《病毒学报》2006,22(6):488-491
目前用于免疫人群的流感疫苗多为三价灭活疫苗,包含A型流感病毒H1N1亚型、H3N2亚型和B型流感病毒。多年来的实践表明,三价灭活疫苗是有一定保护效果的。但是,由于流感病毒血凝素(HA)和神经氨酸酶(NA)经常发生抗原转变和抗原漂移,使其抗原性表现出很大的变异,所以根据流感疫情监测预测的疫苗株也很难产生最理想的保护效果。但流感病毒基质蛋白M2的膜外区氨基酸序列高度保守,有可能发展成为具有交叉保护能力的流感疫苗的候选抗原。该文就A型流感病毒基质蛋白M2疫苗的研究作一综述。1 A型流感病毒基质蛋白M2结构及功能流感病毒基因组RN…  相似文献   

14.
清热消炎复方制剂抗流感病毒作用的研究   总被引:2,自引:0,他引:2  
刘钊  杨占秋  肖红  文利  王征 《中国病毒学》2003,18(6):534-537
为评价清热消炎复方制剂(简称AI)的抗流感病毒活性,我们以病毒唑为对照,通过在体外观察病毒致细胞病变效应(CPE)、MTT细胞染色检查病毒抑制率和检测病毒血凝滴度;在体内观察其对染毒小鼠的死亡保护作用,对小鼠流感病毒性肺炎的抑制作用,以及对小鼠肺内病毒增殖的影响,从而判定其抗流感病毒作用.结果发现AI在160ug/mL时能完全抑制流感病毒在MDCK细胞内的增殖复制作用.体内实验中0.1 g/kg,0.5g/kg,1.2g/kg 3个剂量均能明显降低染毒小鼠的致死率,延长平均存活时间;降低肺炎小鼠的肺指数和血凝滴度(P<0.01).其作用与病毒唑相当.结论认为清热消炎复方制剂是一种有效的体内、体外抗流感病毒中药复方制剂.  相似文献   

15.
The interferon-induced dynamin-like MxA protein has broad antiviral activity against many viruses, including orthomyxoviruses such as influenza A and Thogoto virus and bunyaviruses such as La Crosse virus. MxA consists of an N-terminal globular GTPase domain, a connecting bundle signaling element, and the C-terminal stalk that mediates oligomerization and antiviral specificity. We previously reported that the disordered loop L4 that protrudes from the compact stalk is a key determinant of antiviral specificity against influenza A and Thogoto virus. However, the role of individual amino acids for viral target recognition remained largely undefined. By mutational analyses, we identified two regions in the C-terminal part of L4 that contribute to an antiviral interface. Mutations in the proximal motif, at positions 561 and 562, abolished antiviral activity against orthomyxoviruses but not bunyaviruses. In contrast, mutations in the distal motif, around position 577, abolished antiviral activity against both viruses. These results indicate that at least two structural elements in L4 are responsible for antiviral activity and that the proximal motif determines specificity for orthomyxoviruses, whereas the distal sequence serves a conserved structural function.  相似文献   

16.
17.
Seasonal and highly infectious strains of the influenza A and influenza B viruses cause millions of cases of severe complications in elderly people, children, and patients with immune diseases each year. Immunoglobulin A (IgA), which is an active component of humoral immunity, can prevent the spread of the virus in the upper respiratory tract. The preparation and study of the properties of recombinant virus-specific IgA could be an important approach to finding new means of preventing and treating influenza. Based on CHO DG44 cells, we developed stable monoclonal cell lines that produce monomeric and dimeric antibodies FI6-IgA1 and FI6-IgA2m1 to hemagglutinin (HA) of the influenza A virus. When studying the productivity, growth, and stability of the obtained clones, we found that the dimeric form of antibodies of IgA1 isotype is superior to other forms. The dimeric form of IgA antibodies plays a key role in mucosal immunity. Recognizing the prospects of using dimeric IgA as prophylactic and therapeutic mucosal drugs for viral infections, we studied their virus-neutralizing and antiviral activities on MDCK cell culture and compared them with the antibodies of the IgG1 isotype. This study presents the data on antiviral and virus-neutralizing activities of the FI6-IgA1 dimers to seasonal and highly infectious strains of influenza A virus.  相似文献   

18.
The influenza virus M2 protein is a well-validated yet underexploited proton-selective ion channel essential for influenza virus infectivity. Because M2 is a toxic viral ion channel, existing M2 inhibitors have been discovered through live virus inhibition or medicinal chemistry rather than M2-targeted high-throughput screening (HTS), and direct measurement of its activity has been limited to live cells or reconstituted lipid bilayers. Here, we describe a cell-free ion channel assay in which M2 ion channels are incorporated into virus-like particles (VLPs) and proton conductance is measured directly across the viral lipid bilayer, detecting changes in membrane potential, ion permeability, and ion channel function. Using this approach in high-throughput screening of over 100,000 compounds, we identified 19 M2-specific inhibitors, including two novel chemical scaffolds that inhibit both M2 function and influenza virus infectivity. Counterscreening for nonspecific disruption of viral bilayer ion permeability also identified a broad-spectrum antiviral compound that acts by disrupting the integrity of the viral membrane. In addition to its application to M2 and potentially other ion channels, this technology enables direct measurement of the electrochemical and biophysical characteristics of viral membranes.  相似文献   

19.
流感严重地影响人们的身体健康和工作生活,给社会带来巨大经济损失。疫苗接种是预防流感的有效措施之一,市场上的流感疫苗包括流感灭活疫苗、减毒活疫苗和亚单位疫苗等。这些流感疫苗只能预防相同亚型流感病毒的感染,无法预防不同亚型流感病毒引起的季节性流感和流感大流行,因此迫切需要研发广谱的能预防不同亚型的甲型流感病毒感染的通用疫苗。在此简要介绍甲型流感病毒M2e通用疫苗的研究进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号