首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of coagulation factor VIII (FVIII) by recombinant cell lines is limited by its failure to reach or maintain the native conformation in the endoplasmic reticulum. This results in significant cytoplasmic degradation and/or aggregation of the misfolded product. The molecular chaperone Hsp70 was overexpressed in an attempt to increase the recombinant FVIII (rFVIII) secretion. The characteristics of increased Hsp70 expression were investigated by comparing a clone of BHK-21 cells expressing rFVIII (rBHK-21(host)) to a chaperone clone derived by transfection of the host clone with human Hsp70 (rBHK-21(Hsp70)) in small-scale batch cell cultures. To aid this investigation a number of fluorescence based cellular apoptosis assays were developed and optimized. These assays demonstrated sub-populations of rBHK-21(host) cells that were apoptotic in nature and were identified prior to the loss in plasma membrane integrity. Dual staining for intracellular rFVIII and caspase-3 activation showed a reduction in intracellular rFVIII in rBHK-21(host) cells that correlated with a significant increase in active caspase-3, suggesting that apoptosis was a factor limiting rFVIII secretion. In sharp contrast there was more intracellular rFVIII and less active caspase-3 in rBHK-21(Hsp70) cell cultures. Moreover when grown in batch culture, rBHK-21(Hsp70) cells released rFVIII of higher specific activity (active FVIII protein/total FVIII protein), suggesting improved product quality. Thus, increased expression of HSP70 led to an increased yield of a secreted recombinant protein by inhibition of apoptosis and promoting proper conformational maturation of rFVIII in sub-optimal bioreactor conditions.  相似文献   

2.
Tubocapsenolide A (TA), a novel withanolide-type steroid, exhibits potent cytotoxicity against several human cancer cell lines. In the present study, we observed that treatment of human breast cancer MDA-MB-231 cells with TA led to cell cycle arrest at G(1) phase and apoptosis. The actions of TA were correlated with proteasome-dependent degradation of Cdk4, cyclin D1, Raf-1, Akt, and mutant p53, which are heat shock protein 90 (Hsp90) client proteins. TA treatment induced a transient increase in reactive oxygen species and a decrease in the intracellular glutathione contents. Nonreducing SDS-PAGE revealed that TA rapidly and selectively induced thiol oxidation and aggregation of Hsp90 and Hsp70, both in intact cells and in cell-free systems using purified recombinant proteins. Furthermore, TA inhibited the chaperone activity of Hsp90-Hsp70 complex in the luciferase refolding assay. N-Acetylcysteine, a thiol antioxidant, prevented all of the TA-induced effects, including oxidation of heat shock proteins, degradation of Hsp90 client proteins, and apoptosis. In contrast, non-thiol antioxidants (trolox and vitamin C) were ineffective to prevent Hsp90 inhibition and cell death. Taken together, our results demonstrate that the TA inhibits the activity of Hsp90-Hsp70 chaperone complex, at least in part, by a direct thiol oxidation, which in turn leads to the destabilization and depletion of Hsp90 client proteins and thus causes cell cycle arrest and apoptosis in MDA-MB-231 cells. Therefore, TA can be considered as a new type of inhibitor of Hsp90-Hsp70 chaperone complex, which has the potential to be developed as a novel strategy for cancer treatment.  相似文献   

3.
The heat shock protein 70 (Hsp70, human HSPA1A) plays indispensable roles in cellular stress responses and protein quality control (PQC). In the framework of PQC, it cooperates with the ubiquitin-proteasome system (UPS) to clear damaged and dysfunctional proteins in the cell. Moreover, Hsp70 itself is rapidly degraded following the recovery from stress. It was demonstrated that its fast turnover is mediated via ubiquitination and subsequent degradation by the 26S proteasome. At the same time, the effect of Hsp70 on the functional state of proteasomes has been insufficiently investigated. Here, we characterized the direct effect of recombinant Hsp70 on the activity of 20S and 26S proteasomes and studied Hsp70 degradation by the 20S proteasome in vitro. We have shown that the activity of purified 20S proteasomes is decreased following incubation with recombinant human Hsp70. On the other hand, high concentrations of Hsp70 activated 26S proteasomes. Finally, we obtained evidence that in addition to previously reported ubiquitin-dependent degradation, Hsp70 could be cleaved independent of ubiquitination by the 20S proteasome. The results obtained reveal novel aspects of the interplay between Hsp70 and proteasomes.  相似文献   

4.
Heat shock proteins (Hsps) act as molecular chaperones and are generally constitutively expressed in the absence of stress. Hsps are also inducible by a variety of stressors whose effects could be disastrous on the brain. It has been shown previously that Hsps are differentially expressed in glial and neuronal cells, as well as in the different structures of the brain. This differential expression has been related to specific functions distinct from their general chaperone function, such as intracellular transport. We investigated here the constitutive expression of 5 Hsps (the small Hsp, Hsp25, the constitutive Hsc70 and Hsp90beta, the mainly inducible Hsp70 and Hsp90alpha), and of a molecular chaperone, TCP-1alpha during mouse nervous system development. We analyzed, by immunohistochemistry, their distribution in the central nervous system and in the ganglia of the peripheral nervous system from day 9.5 (E9.5) to day 17.5 (E17.5) of gestation. Hsps are expressed in different cell classes (neuronal, glial, and vascular). The different proteins display different but often overlapping patterns of expression in different regions of the developing nervous system, suggesting unique roles at different stages of neural maturation. Their putative function in cell remodeling during migration or differentiation and in protein transport is discussed. Moreover we consider Hsp90 function in cell signaling and the role of Hsp25 in apoptosis protection.  相似文献   

5.
Most of anti-tumor factors are designed to kill selectively cancer cells; in most cases this action is related to the ability of the above substances to induce apoptosis. One of potent anti-apoptotic mechanisms is based on Hsp70 protein. Since the level of this protein is often higher in malignant tumors than in normal tissues, the aim of this study was to establish whether the elevated Hsp70 content may influence the process of apoptosis induced by anti-tumor drugs in cancer cells population. The increase of intracellular content of Hsp70 in human leukemia U-937 cells was attained by a mild heat stress or by transfection of cells with the human hsp70 gene. The elevation of Hsp70 quantity, irrespective of the way it was performed, leads to the inhibition of apoptosis in cells treated with two substances, etoposide or adriamycin. The inhibition of apoptosis was accompanied with the reducing of the share of cells with fragmented nuclei and with the delay in caspase activation. It is suggested that in addition to the previously discovered targets, whose activity is suppressed by the Hsp70 chaperone, this protein can inhibit the activity of caspase-3 and -7; this delays the onset of apoptosis in part of a cancer cell population.  相似文献   

6.
Human heat shock protein Hsp70 was experimentally inserted into polyelectrolyte microcapsules. Encapsulated recombinant Hsp70 was studied in terms of its effects on neutrophil apoptosis, the production of reactive oxygen species, and the secretion of tumor necrosis factor alpha by promonocytic THP-1 cells. It was found that encapsulated Hsp70 effectively inhibits neutrophil apoptosis, unlike free exogenous protein used in solution. In THP-1 cells, encapsulated and free Hsp70 reduced LPS-induced tumor necrosis factor alpha production with a similar efficiency. Encapsulated Hsp70 reduces LPS-induced reactive oxygen species production by neutrophils in the course of its release from the microcapsules but not as much as free Hsp70. Thus, the polyelectrolyte microcapsules can be used as containers for the effective delivery of Hsp70 to neutrophils and monocytes to significantly improve the functioning of the innate immune system.  相似文献   

7.
The serine-threonine kinase Akt regulates mesangial cell apoptosis, proliferation, and hypertrophy. To define Akt signaling pathways in mesangial cells, we performed a functional proteomic screen for rat mesangial cell proteins phosphorylated by Akt. A group of chaperone proteins, heat shock protein (Hsp) 70, Hsp90alpha, Hsp90beta, Glucose-regulated protein (Grp) Grp78, Grp94, and protein disulfide isomerase (PDI) were identified as potential Akt substrates by two techniques: (a) in vitro phosphorylation of mesangial cell lysate by recombinant active Akt followed by protein separation by SDS-PAGE or 2-DE and phosphoprotein identification by peptide mass fingerprinting using MALDI-MS, or (b) immunoblot analysis of proteins from PDGF-stimulated mesangial cells using an anti-Akt phospho-motif antibody. In vitro kinase reactions using recombinant proteins confirmed that Akt phosphorylates Hsp70, Hsp90alpha and beta, Grp94, and PDI. Immunoprecipitation of Akt from mesangial cell lysate coprecipitated Grp78 and Hsp70. PDGF stimulation of mesangial cells caused an acidic shift in the isoelectric point of Hsp70, Hsp90, and PDI that was dependent on PI-3K activity for Hsp70 and Hsp90. The data suggest that Akt-mediated phosphorylation of stress-induced chaperones represents a mechanism for regulation of chaperone function during mesangial cell responses to physiologic and pathologic stimuli.  相似文献   

8.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is an accessory protein that plays an important role in viral pathogenesis. This pathogenic activity of Vpr is related in part to its capacity to induce cell cycle G2 arrest and apoptosis of target T cells. A screening for multicopy suppressors of these Vpr activities in fission yeast identified heat shock protein 70 (Hsp70) as a suppressor of Vpr-induced cell cycle arrest. Hsp70 is a member of a family of molecular chaperones involved in innate immunity and protection from environmental stress. In this report, we demonstrate that HIV-1 infection induces Hsp70 in target cells. Overexpression of Hsp70 reduced the Vpr-dependent G2 arrest and apoptosis and also reduced replication of the Vpr-positive, but not Vpr-deficient, HIV-1. Suppression of Hsp70 expression by RNA interference (RNAi) resulted in increased apoptosis of cells infected with a Vpr-positive, but not Vpr-defective, HIV-1. Replication of the Vpr-positive HIV-1 was also increased when Hsp70 expression was diminished. Vpr and Hsp70 coimmunoprecipitated from HIV-infected cells. Together, these results identify Hsp70 as a novel anti-HIV innate immunity factor that targets HIV-1 Vpr.  相似文献   

9.
10.
Cell surface-bound heat shock protein 70 (Hsp70) renders tumor cells more sensitive to the cytolytic attack mediated by natural killer (NK) cells. A 14-amino acid Hsp70 sequence, termed TKD (TKDNNLLGRFELSG, aa450-463) could be identified as the extracellular localized recognition site for NK cells. Here, we show by affinity chromatography that both, full-length Hsp70-protein and Hsp70-peptide TKD, specifically bind a 32-kDa protein derived from NK cell lysates. The serine protease granzyme B was uncovered as the 32-kDa Hsp70-interacting protein using matrix-assisted laser desorption ionization time-of-flight mass peptide fingerprinting. Incubation of tumor cells with increasing concentrations of perforin-free, isolated granzyme B shows specific binding and uptake in a dose-dependent manner and results in initiation of apoptosis selectively in tumor cells presenting Hsp70 on the cell surface. Remarkably, Hsp70 cation channel activity was also determined selectively in purified phospholipid membranes of Hsp70 membrane-positive but not in membrane-negative tumor cells. The physiological role of our findings was demonstrated in primary NK cells showing elevated cytoplasmic granzyme B levels following contact with TKD. Furthermore, an increased lytic activity of Hsp70 membrane-positive tumor cells could be associated with granzyme B release by NK cells. Taken together we propose a novel perforin-independent, granzyme B-mediated apoptosis pathway for Hsp70 membrane-positive tumor cells.  相似文献   

11.

Background

We have previously reported that human recombinant granzyme B (grB) mediates apoptosis in membrane heat shock protein 70 (Hsp70)-positive tumor cells in a perforin-independent manner.

Methodology/Principal Findings

Optical imaging of uptake kinetics revealed co-localization of grB with recycling endosomes (Rab9/11) as early as 5 min after internalization, with late endosomes (Rab7) after 30 min, and the lysosomal compartment (LAMP1/2) after 60 to 120 min. Active caspase-3-mediated apoptosis was induced in mouse CT26 monolayer cells and 3D tumor spheroids, but not in normal mouse endothelial cells. Granzyme B selectively reduced the proportion of membrane Hsp70-positive cells in CT26 tumor spheroids. Consecutive i.v. injections of recombinant human grB into mice bearing membrane Hsp70-positive CT26 tumors resulted in significant tumor suppression, and a detailed inspection of normal mouse organs revealed that the administration of anti-tumoral concentrations of grB elicited no clinicopathological changes.

Conclusions/Significance

These findings support the future clinical evaluation of human grB as a potential adjuvant therapeutic agent, especially for treating immunosuppressed patients that bear membrane Hsp70-positive tumors.  相似文献   

12.
Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.  相似文献   

13.
14.
Hsp70 is often overexpressed in cancer cells, and the selective cellular survival advantage that it confers may contribute to the process of tumour formation. Thus, the pharmacological manipulation of Hsp70 levels in cancer cells may be an effective means of preventing the progression of tumours. We found that the downregulation of Hsp70 by ibuprofen in vitro enhances the antitumoural activity of cisplatin in lung cancer. Ibuprofen prominently suppressed the expression of Hsp70 in A549 cells derived from lung adenocarcinoma and sensitized them to cisplatin in association with an increase in the mitochondrial apoptotic cascade, whereas ibuprofen alone did not induce cell death. The cisplatin-dependent events occurring up- and downstream of mitochondrial disruption were accelerated by treatment with ibuprofen. The increase in cisplatin-induced apoptosis caused by the depletion of Hsp70 by RNA interference is evidence that the increased apoptosis by ibuprofen is mediated by its effect on Hsp70. Our observations indicate that the suppression of Hsp70 by ibuprofen mediates the sensitivity to cisplatin by enhancing apoptosis at several stages of the mitochondrial cascade. Ibuprofen, therefore, is a potential therapeutic agent that might allow lowering the doses of cisplatin and limiting the many challenge associated with its toxicity and development of drug resistance.  相似文献   

15.
A tumor-selective cell surface localization of heat shock protein 70 (Hsp70), the major heat-inducible member of the Hsp70 group, correlates with an increased sensitivity to lysis mediated by human natural killer (NK) cells and, therefore, might be of clinical relevance. With the exception of mammary carcinomas, an Hsp70 plasma membrane expression was found on freshly isolated human biopsy material of colorectal, lung, neuronal, and pancreas carcinomas, liver metastases, and leukemic blasts of patients with acute myelogenous leukemia. Since normal tissues and bone marrow of healthy human individuals do not express Hsp70 on the cell surface, Hsp70 can be considered as a tumor-selective structure in vivo. Furthermore, we demonstrate that autologous, Hsp70-positive leukemic blasts can be killed by NK cells stimulated with low doses of interleukin 2 plus recombinant Hsp70 protein.  相似文献   

16.
Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens.  相似文献   

17.
High expression of Hsp27 in glioma cells has been closely associated with tumor cell proliferation and apoptosis inhibition. The aim of the present study was to asses the effects of rosmarinic acid (RA) on Hsp27 expression and apoptosis in non-transfected and transfected human U-87 MG cells. The effect of rosmarinic acid was compared to quercetin, which is known to be a good Hsp27 inhibitor. In order to block the expression of Hsp27 gene (HSPB1), transfection with specific siRNAs was performed. Western blotting technique was used to assess the Hsp27 expression, and caspase-3 colorimetric activity assay was performed to determine apoptosis induction. According to the results, it was found that RA and quercetin effectively silenced Hsp27 and both agents induced apoptosis by activating the caspase-3 pathway. Eighty and 215 μM RA decreased the level of Hsp27 by 28.8 and 46.7% and induced apoptosis by 30 and 54%, respectively. For the first time, we reported that rosmarinic acid has the ability to trigger caspase-3 induced apoptosis in human glioma cells. As a result of siRNA transfection, the Hsp27 gene was silenced by ~?50% but did not cause a statistically significant change in caspase-3 activation. It was also observed that apoptosis was induced at a higher level as a result of Hsp27 siRNA and subsequent quercetin or RA treatment. siRNA transfection and 215 μM RA treatment suppressed Hsp27 expression level by 90.5% and increased caspase-3 activity by 58%. Herein, we demonstrated that RA administered with siRNA seems to be a potent combination for glioblastoma therapy.  相似文献   

18.
Stem cell-based approaches provide hope as a potential therapy for neurodegenerative diseases and stroke. One of the major scientific hurdles for stem cell therapy is the poor survival rate of the newly formed or transplanted neural stem cells. In this study, we found that low-dose treatment with the Heat shock protein 90 (Hsp90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), a heavily investigated anti-cancer drug, prevented neural progenitor cells from either naturally-occurring or stress-induced apoptosis, although it induced apoptosis at higher doses. This stress adaptation effect mediated by low-dose 17-AAG is accompanied by activation of multiple cell survival pathways, including the stress response pathway (induction of Hsp70), the MAPK pathway, and the PI3K/Akt pathway. When administered in vivo, 17-AAG led to Akt and glycogen synthase kinase 3β phosphorylation, and more 5-bromo-2'-deoxyuridine positive cells in the mouse brain. These findings could have profound implications in stem cell therapy for neurodegenerative diseases and stroke.  相似文献   

19.
Full-length Hsp70 protein (Hsp70) and the C-terminal domain of Hsp70 (Hsp70C) both stimulate the cytolytic activity of naive natural killer (NK) cells against Hsp70-positive tumor target cells. Here, we describe the characterization of Hsp70-NK cell interaction with binding studies using the human NK cell line YT. Binding of recombinant Hsp70 protein (Hsp70) and the C-terminal domain of Hsp70 (Hsp70C) to YT cells is demonstrated by immunofluorescence studies. A phenotypic characterization revealed that none of the recently described HSP-receptors (alpha2-macroglobulin receptor CD91, Toll-like receptors 2, 4, 9, CD14) are expressed on YT cells. Only the C-type lectin receptor CD94 is commonly expressed by YT cells and Hsp70 reactive NK cells. A correlation of the cell density-dependent, variable CD94 expression and the binding capacity of Hsp70 was detected. Furthermore, Hsp70 binding could be completely abrogated by preincubation of YT cells with a CD94-specific antibody. Competition assays using either unlabeled Hsp70 protein or an unrelated protein (GST) in 20-fold excess and binding studies with escalating doses of Hsp70 protein provide evidence for a specific and concentration-dependent interaction of Hsp70 with YT cells. In addition to Hsp70 and Hsp70C, a 14-mer Hsp70 peptide termed TKD is known to exhibit comparable stimulatory properties on NK cells. Similar to full-length Hsp70 protein (10 microg/ml-50 microg/ml), a specific binding of this peptide to YT cells was observed at 4 degrees C, at equivalent concentrations (2.0 microg/ml-8.0 microg/ml). Following a 30 min incubation period at 37 degrees C, membrane-bound Hsp70 protein and Hsp70 peptide TKD were completely taken up into the cytoplasm.  相似文献   

20.
BACKGROUND: Elevated temperatures jeopardize plant disease resistance, as mediated by salicylic acid (SA). SA potentiates heat-induced expression of the 70-kDa heat shock protein (Hsp70) in tomato cells. In mammalian cells, Hsp70 suppresses apoptosis. We hypothesized that potentiation of heat-induced Hsp70 by SA contributes to a reduction in apoptosis in tobacco protoplasts. METHODS: Tobacco protoplasts (Nicotiana tabacum) were exposed to SA (70 microM) at normal temperatures or in combination with heat shock. Hsp70/Hsc70 accumulation and phosphatidylserine (PS) exposure, DNA fragmentation, as well as loss of mitochondrial membrane potential were quantified by flow cytometry. RESULTS AND CONCLUSIONS: SA at normal temperatures did not influence Hsp70/Hsc70 accumulation, but were found to induce apoptosis. In contrast, SA in combination with HS potentiated heat-induced Hsp70/Hsc70 accumulation in tobacco protoplasts that correlated negatively with apoptosis, illustrated by decreased PS exposure and DNA fragmentation and enhanced mitochondrial membrane potential. We propose that this correlation supports a possible role for apoptosis suppression by Hsp70 under elevated temperatures during pathogen infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号