首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation in all three prostate cancer cell lines. The IC(50) values after 24h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 microg/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation, (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 microg/ml. In cell cycle analysis, TRF (10-40 microg/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.  相似文献   

2.
目的:观察前列腺癌组织及不同前列腺癌细胞系中miR-182的表达,并探讨下调其表达对前列腺癌细胞增殖和凋亡的影响及机制。方法:采用实时荧光定量PCR(q RT-PCR)检测30例前列腺癌组织和30例相应的癌旁组织以及前列腺正常上皮RWPE-1细胞、前列腺癌PC-3、LNCa P和DU145细胞中miR-182的表达,进一步采用Lipfectamine 2000脂质体转染miRNA-182 inhibitor和阴性对照miRNA于PC-3细胞后,通过噻唑蓝(MTT)比色法检测细胞增殖情况,流式细胞术检测细胞凋亡率,免疫印迹(Western blot)法检测转录因子FOXO1、血管内皮生长因子(VEGF)和抑癌基因p53蛋白的表达。结果:miR-182在前列腺癌组织中的表达明显高于癌旁组织(P0.05);miR-182在前列腺癌细胞系PC-3、LNCa P和DU145中的表达均高于前列腺正常上皮细胞RWPE-1(P0.05),其中PC-3细胞中miR-182表达水平最高。转染miRNA-182 inhibitor至PC-3细胞成功下调miR-182表达后,细胞的增殖能力明显受到抑制,细胞凋亡能力明显增强,FOXO1表达水平显著升高,VEGF和p53的表达明显降低,差异均具有统计学意义(P0.05)。结论:miR-182在前列腺癌组织及细胞中呈高表达,下调miR-182的表达可能通过增加FOXO1的表达并减少VEGF和p53的表达,抑制前列腺癌细胞增殖并诱导细胞凋亡。  相似文献   

3.
It was shown that high doses of beta-carotene (>30 microM) decrease proliferation of prostate cancer cells in vitro. However, it is rather doubtful whether such concentration of beta-carotene is really accessible at cellular level. We studied the effect of 3 and 10 microM beta-carotene on proliferation and gene expression in LNCaP and PC-3 prostate cancer cell lines. Beta-carotene--more efficiently absorbed from medium by androgen-sensitive LNCaP cells--increased proliferation of LNCaP cells whereas it had weaker effect on PC-3 cells. Initial global analysis of expression of genes in both cell lines treated with 10 microM beta-carotene (Affymetrix HG-U133A) showed remarkable differences in number of responsive genes. Their recognition allows for conclusion that differences between prostate cancer cell lines in response to beta-carotene treatment are due to various androgen sensitivities of LNCaP and PC-3 cells. Detailed analysis of expression of selected genes in beta-carotene treated LNCaP cells at the level of mRNA and protein indicated that the observed increase of proliferation could have been the result of slight induction of a few genes affecting proliferation (c-myc, c-jun) and apoptosis (bcl-2) with no significant effect on major cell cycle control genes (cdk2, RB, E2F-1).  相似文献   

4.
Prostate cancer is the second highest caused by cancer-related death among males. microRNAs (miRs) have been reported to participate in carcinogenesis, yet their roles in prostate cancer are rarely studied or investigated. Therefore, the present study attempted to explore the effect of miR-137 in prostate cancer via regulating NADPH oxidase 4 (NOX4). Initially, microarray analysis was performed to obtain prostate cancer-related differentially expressed genes and miRs that regulated NOX4, followed by detecting the expression of miR-137 and NOX4 and its target relationship. Moreover, PC-3 cells were transfected with small interfering RNA (siNOX4) and miR-137 mimic for exploring the effect of miR-137 on glycolysis, cell proliferation, and apoptosis in prostate cancer by evaluating lactate production, glucose uptake, adenosine triphosphate (ATP) production, viability rate, and expression of cleaved caspases 3, 8, and 9, cytochrome c, cleaved poly ADP ribose polymerase (PARP), Bax, and Bcl-2. miR-137 was vital to prostate cancer progression via regulating NOX4. Besides, miR-137 expressed poorly while NOX4 expressed highly in prostate cancer. NOX4 was the target gene of miR-137. Additionally, overexpression of miR-137 and silencing of NOX4 were observed to decrease NOX4 and Bcl-2 protein expression, but increase cleaved caspases 3, 8, and 9, cytochrome c, cleaved-PARP, and Bax protein expression. Furthermore, miR-137 overexpression and NOX4 silencing contributed to decreased lactate production, glucose uptake, ATP production, and cell proliferation, but increased apoptosis rate. Collectively, the present study showed that miR-137 repressed glycolysis in prostate cancer through knockdown of NOX4, which might be a potential theoretical target for prostate cancer treatment.  相似文献   

5.
Bisphenol A (BPA) is a well known environmental endocrine disruptor that may cause human prostate cancer through disturbing cell mitosis, proliferation, and apoptosis. As one of the most important anion channels in organisms, cystic fibrosis transmembrane conductance regulator (CFTR) is proposed as a tumor suppressor in carcinogenesis and development of prostate cancer in recent studies. Whether CFTR plays a role in BPA-induced prostate cancer needs to be further identified. In this study, two prostate cancer cell lines PC-3 and LNCaP were exposed to BPA for detecting the cytotoxic reactions by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and enzyme-linked immunosorbent assays. After the treatment with BPA for 24 hours, the cell viability was decreased significantly with increased cell apoptosis in the two cell lines. Moreover, both PC-3 and LNCaP cells had a reduced expression level of cAMP, CFTR, and adenosine triphosphate upon BPA treatment. In addition, AMPKα kinase was found upregulated to promote cell apoptosis through increasing Bax expression and decreasing Bcl-2 expression. Our study suggests a role and mechanism of CFTR in BPA-induced prostate cancer via cell apoptosis for the first time.  相似文献   

6.
7.
Zinc concentrations in the prostate are uniquely high but are dramatically decreased with prostate cancer. Studies have suggested that increasing zinc in the prostate may be a potential therapeutic strategy. The goal of this study was to evaluate the antiproliferative effects of zinc in prostate cancer cells (PC-3) and noncancerous benign prostate hyperplasia (BPH) cells (BPH-1) and to define possible mechanisms. PC-3 and BPH-1 cells were treated with zinc (0–250 μM) for 24 and 48 h, and cell growth and viability were examined. Apoptosis was assessed by phosphatidylserine externalization, caspase activation and protein expression of B-cell CLL/lymphoma 2 (Bcl-2)-associated X protein (BAX):Bcl-2. BPH-1 cells were more sensitive to the antiproliferative effects of zinc compared to PC-3. The response to zinc in PC-3 and BPH-1 cells differed as evidenced by opposing effects on Bcl-2:BAX expression. Additionally, different effects on the nuclear expression and activity of the p65 subunit of nuclear factor kappa B were observed in response to zinc between the two cell types. The differential response to zinc in PC-3 and BPH-1 cells suggests that zinc may serve an important role in regulating cell growth and apoptosis in prostate cancer and hyperplasia cells.  相似文献   

8.
Urokinase-type plasminogen activator (uPA) is a serine protease that is involved in cancer progression, especially invasion and metastasis including prostate cancer. uPA activation is mediated by transactivation of uPAR and epidermal growth factor receptor (EGF-R) in prostate cancer progression. Prostate cancer (PC-3) cells have highly invasive capacity and they express uPA and uPAR gene. PC-3 cells are treated with quercetin, which inhibits invasion and migration of PC-3 cells. Quercetin downregulates uPA, uPAR and EGF, EGF-R mRNA expressions. Quercetin inhibits cell survival factor β-catenin, NF-κB and also proliferative signalling molecules such as p-EGF-R, N-Ras, Raf-1, c.Fos c.Jun and p-c.Jun protein expressions. But quercetin increased p38 mitogen-activated protein kinase protein expression. Our results suggest that quercetin inhibit migration and invasion of prostate cancer cells. It shows the value for treatment of invasive and metastasis type of prostate cancer.  相似文献   

9.
Proteasome 26S subunit ATPase 4 (PSMC4) could regulate cancer progression. However, the function of PSMC4 in prostate carcinoma (PCa) progression requires further clarification. In the study, PSMC4 and chromobox 3 (CBX3) levels were verified by TCGA data and tissue microarrays. Cell counting kit-8, cell apoptosis, cell cycle, wound healing, transwell and xenograft tumour model assays were performed to verify biological functions of PSMC4 in PCa. RNA-seq, PCR, western blotting and co-IP assays were performed to verify the mechanism of PSMC4. Results showed that PSMC4 level was significantly increased in PCa tissues, and patients with PCa with a high PSMC4 level exhibited shorter overall survival. PSMC4 knockdown markedly inhibited cell proliferation, cell cycle and migration in vitro and in vivo, and significantly promoted cell apoptosis. Then further study revealed that CBX3 was a downstream target of PSMC4. PSMC4 knockdown markedly reduced CBX3 level, and inhibited PI3K-AKT-mTOR signalling. CBX3 overexpression markedly promoted epidermal growth factor receptor (EGFR) level. Finally, PSMC4 overexpression showed reverse effect in DU145 cells, and the effects of PSMC4 overexpression on cell proliferation, migration and clonal formation were rescued by the CBX3 knockdown, and regulated EGFR-PI3K-AKT-mTOR signalling. In conclusion, PSMC4 could regulate the PCa progression by mediating the CBX3-EGFR-PI3K-AKT-mTOR pathway. These findings provided a new target for PCa treatment.  相似文献   

10.
Bone metastasis is a common event and a major cause of morbidity in prostate cancer patients. After colonization of bone, prostate cells induce an osteoblastic reaction which is not associated with marrow fibrosis (i.e., osteoblast but not fibroblast proliferation). In the present study we test the hypothesis that the tumoral prostatic cell line (PC-3) secretes factors that block the osteoblast differentiation process, resulting in an increase of the relative size of the proliferative cell pool. Our results, using fetal rat calvaria cells in culture, show that conditioned medium from PC-3 cells (PC-3 CM) stimulates osteoblast proliferation and inhibits both alkaline phosphatase (AP) activity (an early differentiation marker) and the mineralization process, measured as calcium accumulation (late differentiation marker). The inhibition of the expression of AP and mineralization depends on the presence of PC-3 CM during the proliferative phase of culture and suggests that both processes occur in a nonsimultaneous fashion. The inhibitory effect of PC-3 CM was not reverted by dexamethasone, which would indicate that prostatic-derived factors and the glucocorticoid do not share a common site of action. Measurement of the proliferative capacity of subcultures from control and treated cells demonstrates that PC-3 CM treatment induces the maintenance of the proliferative potential that characterizes undifferentiated precursor cells. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Chronic or recurrent inflammation plays a role in the development of many types of cancer including prostate cancer. CXCL10 (interferon-gamma inducible protein-10, IP-10) is a small secretory protein of 8.7 kDa. Recently, it has been shown that normal prostate epithelial (PZ-HPV-7) cells produce lower amounts of angiogenic CXC chemokines (GRO-alpha, IL-8) and higher amounts of angiostatic chemokines (CXCL10, CXCL11) as compared to prostate cancer cells (CA-HPV-10 and PC-3). Accordingly, we studied the effects of overexpression of CXCL10 in human prostate cancer LNCaP cells. LNCaP cells were transiently transfected with CXCL10 cDNA in pIRES2-EGFP vector. CXCL10, CXCR3, PSA and G3PDH mRNA levels were determined by semi-quantitative conventional and quantitative real-time RT-PCR and fluorescence-activated cell sorting (FACS). The expression of CXCL10 was markedly enhanced in the transfected cells at mRNA and protein levels in the cells. Overexpression of CXCL10 inhibited cell proliferation of the transfected cells by 30%-40% in serum-limited medium (1% FCS in RPMI1640 medium) and decreased PSA production. CXCR3 expression was significantly induced by the overexpression of CXCL10 as determined by RT-PCR and FACS. These results indicated that CXCL10 inhibited LNCaP cell proliferation and decreased PSA production by up-regulation of CXCR3 receptor. CXCL10 may be potentially useful in the treatment of prostate cancer.  相似文献   

12.
The 52-aminoacid peptide adrenomedullin (AM) is expressed in the normal and malignant prostate. We have previously shown that prostate cancer cells produce and secrete AM, which acts as an autocrine growth inhibitory factor. We have evaluated in the present study the role of AM in prostate cancer cell apoptosis, induced either by serum deprivation or treatment with the chemotherapeutic agent etoposide (which acts as an inhibitor of topoisomerase II). For this purpose we over-expressed AM in PC-3, DU 145 and LNCaP cells, which were transfected with an expression vector carrying AM. We also treated the parental cell lines with synthetic AM in normal culture conditions and in conditions of induced-apoptosis. After serum removal, AM prevented apoptosis in DU 145 and PC-3 cells, but not in LNCaP cells. When treated with etoposide, AM prevented apoptosis in PC-3 and LNCaP cells, but not in DU 145 cells. Cell cycle analysis demonstrated a significant decrease in the percentage of AM-overexpressing PC-3 cells in the subG0/G1 phase after treatment with etoposide, as compared to the percentage of mock-transfected PC-3 treated cells. Western blot showed that protein levels of phosphorylated ERK1/2 increased in parental PC-3 cells after treatment with etoposide. In PC-3 cells overexpressing AM, phosphorylated ERK1/2 basal levels were lower than basal levels of parental PC-3 cells, and treatment with etoposide did not result in such an increase. Etoposide produced a significant increase in cleaved PARP in parental PC-3 cells. However, PC-3 clones overexpressing AM that were treated with etoposide only showed a mild increase in fragmented PARP. The ratio Bcl-2/Bax was reduced in parental or mock-transfected PC-3 cells after treatment with etoposide. On the contrary, this ratio was not reduced in PC-3 clones with AM overexpression that were treated with etoposide. All these data demonstrate that AM plays a protective role against induced apoptosis in prostate cancer cells. These results may have important implications in prostate cancer resistance to chemotherapeutic agents.  相似文献   

13.
Cancer as a multistep and complicated disease is regulated by several molecular and cellular events. Cancer treatment could be managed at the early stages when the tumor is confined in the tissue. However, disseminated cancer cells metastasize to other body parts and generate new tumors resulting in mortality. Mesenchymal stem cells (MSCs) are found in different body parts and helps adult tissue regeneration. The role of MSCs in cancer progression has emerged as one of the important aspects in cancer biology and is the aim of interest in recent years. In the current study, effects of Dental Pulp Stem Cells (DPSCs) on PC-3 prostate cancer cell proliferation and migration were conducted by cell proliferation, apoptosis, gene expression and cell migration analysis in vitro. Condition medium (CM) obtained from DPSCs increased cell proliferation of PC-3 cells and decreased apoptosis. Either administration of CM or trans well co-culture of DPSCs increased cell migration in scratch assay, confirmed by gene expression analysis of migratory genes including fibronectin, laminin and collagen type I (Col I). Furthermore, DPSCs participated in a self-organized structure with PC-3 cells in co-culture conditions. Overall, results indicated that DPSCs could promote PC-3 cancer cell proliferation and metastasis in co-culture conditions in vitro.  相似文献   

14.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

15.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.  相似文献   

16.
《Translational oncology》2020,13(1):102-112
Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant properties and is deemed as a tissue protector. However, effects of HO-1 in prostate cancer remain in controversy. We evaluated the role of HO-1 in prostate carcinoma in vitro and in vivo.Overexpression of HO-1 did not affect prostate cell proliferation in the normal condition but enhanced cell proliferation under serum starvation. HO-1 overexpression enhanced cell invasion of PC-3 cells through epithelial–mesenchymal transition (EMT) induction, which was supported by increased Slug, N-cadherin, and vimentin expressions. In the xenograft animal study, HO-1 overexpression enhanced PC-3 cell tumor growth in vivo. HO-1 attenuated reactive oxygen species induced by H2O2 or pyocyanin treatment in PC-3 and DU145 cells. HO-1 further reduced PC-3 and DU145 cell apoptosis induced by H2O2 or serum starvation. Our results suggested that HO-1 was able to increase prostate carcinoma cell invasion in vitro and tumor growth in vivo. The EMT induction and antioxidant and antiapoptotic effects of HO-1 in the prostate carcinoma cells may be responsible for these findings.  相似文献   

17.
Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells   总被引:1,自引:0,他引:1  
We have identified the presence of leupaxin (LPXN), which belongs to the paxillin extended family of focal adhesion-associated adaptor proteins, in prostate cancer cells. Previous studies have demonstrated that LPXN is a component of the podosomal signaling complex found in osteoclasts, where LPXN was found to associate with the protein tyrosine kinases Pyk2 and c-Src and the cytosolic protein tyrosine phosphatase-proline-, glutamate-, serine-, and threonine-rich sequence (PTP-PEST). In the current study, LPXN was detectable as a 50-kDa protein in PC-3 cells, a bone-derived metastatic prostate cancer cell line. In PC-3 cells, LPXN was also found to associate with Pyk2, c-Src, and PTP-PEST. A siRNA-mediated inhibition of LPXN resulted in decreased in vitro PC-3 cell migration. A recombinant adenoviral-mediated overexpression of LPXN resulted in an increased association of Pyk2 with LPXN, whereas a similar adenoviral-mediated overexpression of PTP-PEST resulted in decreased association of Pyk2 and c-Src with LPXN. The overexpression of LPXN in PC-3 cells resulted in increased migration, as assessed by in vitro Transwell migration assays. On the contrary, the overexpression of PTP-PEST in PC-3 cells resulted in decreased migration. The overexpression of LPXN resulted in increased activity of Rho GTPase, which was decreased in PTP-PEST-overexpressing cells. The increase in Rho GTPase activity following overexpression of LPXN was inhibited in the presence of Y27632, a selective inhibitor of Rho GTPase. In conclusion, our data demonstrate that LPXN forms a signaling complex with Pyk2, c-Src, and PTP-PEST to regulate migration of prostate cancer cells. PC-3; protein tyrosine phosphatase-proline-, glutamate-, serine-, and threonine-rich sequence; c-Src; migration  相似文献   

18.
Retigeric acid B (RB), a naturally occurring pentacyclic triterpenic acid, has been noted for its antifungal properties in vitro. Here, we observed that RB inhibited prostate cancer cell proliferation and induced cell death in a dose-dependent manner, but exerted very little inhibitory effect on noncancerous prostate epithelial cell viability. Treatment of androgen-independent PC-3 cells with RB caused a moderate increase in p21Cip1, and enforced the cell cycle arrest in the S phase. A block of S phase was accompanied with decreases in cyclin B, and increases in cyclin E and cyclin A proteins and phosphorylated retinoblastoma protein (pRb), whereas the expression of cdk2 remained almost unchanged in PC-3 cells exposed to RB. Moreover, RB significantly inhibited DNA synthesis with a dose-dependent reduction in the incorporation of BrdU into DNA, and enhanced apoptosis of PC-3 cells with induction of a higher ratio of Bax/Bcl-2 proteins, and activation of caspase-3 which, in turn, promoted the cleavage of poly (ADP-ribose) polymerase (PARP). However, pretreatment with the pan-caspase inhibitor z-VAD-fmk only partially alleviated RB-triggered apoptosis in PC-3 cells, suggesting the involvement of both caspase-dependent and caspase-independent pathways. Additionally, treatment of androgen-sensitive LNCaP cells with RB led to a reduction in the expression of androgen receptor (AR), and subsequently decreased the transactivity of AR. These observations help to support the search for promising candidates to treat prostate cancer.  相似文献   

19.
20.
Prasad S  Kaur J  Roy P  Kalra N  Shukla Y 《Life sciences》2007,81(17-18):1323-1331
Cancer of the prostate gland (PCA) is the most common invasive malignancy and is the second leading cause of cancer-related death in males. The polyphenolic constituents of black tea have gained considerable attention as chemopreventive agents. Many studies have shown that black tea reduces the risk of several cancer types. In the present study, we studied the effect of a black tea polyphenol, theaflavin (TF), on cellular proliferation and cell death in the human prostate cancer cell line, PC-3. We showed that TF inhibits cell proliferation in a dose- and time-dependent manner. Studies on cell cycle progression have shown that the anti-proliferative effect of TF is associated with an increase in the G2/M phase of PC-3 cells. Western blot results showed that TF-induced G2/M phase arrest was mediated through the inhibition of cyclin-regulated signaling pathways. TF induces cyclin kinase inhibitor p21(waf1/cip1) expression and inhibits cdc25C and cyclin B expression. Increased exposure time to TF caused apoptosis of PC-3 cells, which was associated with up-regulation of the pro-apoptotic proteins Bax, caspase-3 and caspase-9 and down-regulation of anti-apoptotic protein Bcl-2. The role of caspase-induced apoptosis was further confirmed by a reduction in mitochondria membrane potential and the appearance of a DNA laddering pattern. Thus, it can be concluded that TF acts as an effective anti-proliferative agent by modulating cell growth regulators in prostate cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号