首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.  相似文献   

2.
Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions.  相似文献   

3.
The interaction of heat shock proteins (HSP) with cellular membranes has been an enigmatic process, initially observed by morphological studies, inferred during the purification of HSP70s, and confirmed after the detection of these proteins on the surface of cancer cells and their insertion into artificial lipid bilayers. Today, the association of several HSP with lipid membranes is well established. However, the mechanisms for membrane insertion have been elusive. There is conclusive evidence indicating that HSP70s have a great selectivity for negatively charged phospholipids, whereas other HSP have a broader spectrum of lipid specificity. HSP70 also oligomerizes upon membrane insertion, forming ion conductance channels. The functional role of HSP70 lipid interactions appears related to membrane stabilization that may play a role during cell membrane biogenesis. They could also play a role as membrane chaperones as well as during endocytosis, microautophagy, and signal transduction. Moreover, HSP membrane association is a key component in the extracellular export of these proteins. The presence of HSP70 on the surface of cancer cells and its interaction with lysosome membranes have been envisioned as potential therapeutic targets. Thus, the biology and function of HSP membrane association are reaching a new level of excitement. This review is an attempt to preserve the recollection of the pioneering contributions of many investigators that have participated in this endeavor.  相似文献   

4.
Lipid analysis and ESR studies were carried out on prostasomes isolated from human semen. Cholesterol plus phospholipids amounted to approximately 0.80 mumol per mg protein with a striking quantitative domination of cholesterol over the phospholipids, the molar ratios of cholesterol/sphingomyelin/glycerophospholipids being 4:1:1. Saturated and monounsaturated fatty acids were dominating both in the glycerophospholipids and in sphingomyelin. The order parameters, S, deduced from ESR spectra of spin-labelled fatty acids incorporated into prostasome membranes order parameters, S, deduced from ESR spectra of spin-labelled fatty acids incorporated into prostasome membranes were very high, viz. 0.75 for 5-doxylstearic acid and 0.30 for 16-doxylstearic acid at 25 degrees C. Slightly lower values were obtained for the spin-labelled fatty acids when they were incorporated into dispersions of extracted prostasome lipids or into synthetic lipid mixtures of similar composition. The highly ordered lipids in the prostasome membrane thus seemed to be minimally perturbed by proteins in the membrane and ESR spectra showed no signs of immobilized lipids.  相似文献   

5.
De novo lipogenesis is considered the primary source of fatty acids for lipid synthesis in cancer cells, even in the presence of exogenous fatty acids. Here, we have used an isotopic fatty acid labeling strategy coupled with metabolomic profiling platforms to comprehensively map palmitic acid incorporation into complex lipids in cancer cells. We show that cancer cells and tumors robustly incorporate and remodel exogenous palmitate into structural and oncogenic glycerophospholipids, sphingolipids, and ether lipids. We also find that fatty acid incorporation into oxidative pathways is reduced in aggressive human cancer cells, and instead shunted into pathways for generating structural and signaling lipids. Our results demonstrate that cancer cells do not solely rely on de novo lipogenesis, but also utilize exogenous fatty acids for generating lipids required for proliferation and protumorigenic lipid signaling. This article is part of a special issue entitled Lipid Metabolism in Cancer.  相似文献   

6.
The movement of lipids from their sites of synthesis to ultimate intracellular destinations must be coordinated with lipid metabolic pathways to ensure overall lipid homeostasis is maintained. Thus, lipids would be predicted to play regulatory roles in the movement of vesicles within cells. Recent work has highlighted how specific lipid metabolic events can affect distinct vesicle trafficking steps and has resulted in our first glimpses of how alterations in lipid metabolism participate in the regulation of intracellular vesicles. Specifically, (i) alterations in sphingolipid metabolism affect the ability of SNAREs to fuse membranes, (ii) sterols are required for efficient endocytosis, (iii) glycerophospholipids and phosphorylated phosphatidylinositols regulate Golgi-mediated vesicle transport, (iv) lipid acylation is required for efficient vesicle transport mediated membrane fission, and (v) the addition of glycosylphosphatidylinositol lipid anchors to proteins orders them into distinct domains that result in their preferential sorting from other vesicle destined protein components in the endoplasmic reticulum. This review describes the experimental evidence that demonstrates a role for lipid metabolism in the regulation of specific vesicle transport events.  相似文献   

7.
Eukaryotic cells can synthesize thousands of different lipid molecules that are incorporated into their membranes. This involves the activity of hundreds of enzymes with the task of creating lipid diversity. In addition, there are several, typically redundant, mechanisms to transport lipids from their site of synthesis to other cellular membranes. Biosynthetic lipid transport helps to ensure that each cellular compartment will have its characteristic lipid composition that supports the functions of the associated proteins. In this article, we provide an overview of the biosynthesis of the major lipid constituents of cell membranes, that is, glycerophospholipids, sphingolipids, and sterols, and discuss the mechanisms by which these newly synthesized lipids are delivered to their target membranes.  相似文献   

8.
Bacterial membranes are complex mixtures of lipids and proteins, the combination of which confers biophysical properties that allows cells to respond to environmental conditions. Carotenoids are sterol analogs that are important for regulating membrane dynamics. The membrane of Pantoea sp. YR343 is characterized by the presence of the carotenoid zeaxanthin, and a carotenoid-deficient mutant, ΔcrtB, displays defects in root colonization, reduced secretion of indole-3-acetic acid, and defects in biofilm formation. Here we demonstrate that the loss of carotenoids results in changes to the membrane lipid composition in Pantoea sp. YR343, including increased amounts of unsaturated fatty acids in the ΔcrtB mutant membranes. These mutant cells displayed less fluid membranes in comparison to wild type cells as measured by fluorescence anisotropy of whole cells. Studies with artificial systems, however, have shown that carotenoids impart membrane rigidifying properties. Thus, we examined membrane fluidity using spheroplasts and vesicles composed of lipids extracted from either wild type or mutant cells. Interestingly, with the removal of the cell wall and membrane proteins, ΔcrtB vesicles were more fluid than vesicles made from lipids extracted from wild type cells. In addition, carotenoids appeared to stabilize membrane fluidity during rapidly changing temperatures. Taken together, these results suggest that Pantoea sp. YR343 compensates for the loss of carotenoids by changing lipid composition, which together with membrane proteins, results in reduced membrane fluidity. These changes may influence the abundance or function of membrane proteins that are responsible for the physiological changes observed in the ΔcrtB mutant cells.  相似文献   

9.
The cellular response to stress is orchestrated by the expression of a family of proteins termed heat shock proteins (hsp) that are involved in the stabilization of basic cellular processes to preserve cell viability and homeostasis. The bulk of hsp function occurs within the cytosol and subcellular compartments. However, some hsp have also been found outside cells released by an active mechanism independent of cell death. Extracellular hsp act as signaling molecules directed at activating a systemic response to stress. The export of hsp requires the translocation from the cytosol into the extracellular milieu across the plasma membrane. We have proposed that membrane insertion is the initial step in this export process. We investigated the interaction of the major inducible hsp from mammalian (Hsp70) and bacterial (DnaK) species with liposomes. We found that mammalian Hsp70 displayed a high specificity for negatively charged phospholipids, such as phosphatidyl serine, whereas DnaK interacted with all lipids tested regardless of the charge. Both proteins were inserted into the lipid bilayer as demonstrated by resistance to acid or basic washes that was confirmed by partial protection from proteolytic cleavage. Several regions of mammalian Hsp70 were inserted into the membrane with a small portion of the N-terminus end exposed to the outer phase of the liposome. In contrast, the N-terminus end of DnaK was inserted into the membrane, exposing the C-terminus end outside the liposome. Mammalian Hsp70 was found to make high oligomeric complexes upon insertion into the membranes whereas DnaK only formed dimers within the lipid bilayer. These observations suggest that both Hsp70s interact with lipids, but mammalian Hsp70 displays a high degree of specificity and structure as compared with the bacterial form.  相似文献   

10.
Heat shock proteins (hsps) are intracellular chaperones that play a key role in the recovery from stress. Hsp70, the major stress-induced hsp, has been found in the extracellular medium and is capable of activating immune cells. The mechanism involved in Hsp70 release is controversial because this protein does not present a consensual secretory signal. In this study, we have shown that Hsp70 integrates into artificial lipid bilayer openings of ion conductance pathways. In addition, this protein was found inserted into the plasma membrane of cells after stress. Hsp70 was released into the extracellular environment in a membrane-associated form, sharing the characteristics of this protein in the plasma membrane. Extracellular membranes containing Hsp70 were at least 260-fold more effective than free recombinant protein in inducing TNF-alpha production as an indicator of macrophage activation. These observations suggest that Hsp70 translocates into the plasma membrane after stress and is released within membranous structures from intact cells, which could act as a danger signal to activate the immune system.  相似文献   

11.
Heat shock protein 90 (Hsp90) is an essential molecular chaperone with versatile functions in cell homeostatic control under both normal and stress conditions. Hsp90 has been found to be expressed on the cell surface, but the mechanism of Hsp90 association to the membrane remains obscure. In this study, the direct interaction of Hsp90 and phospholipid vesicles was characterized, and the role of Hsp90 on membrane physical state was explored. Using surface plasmon resonance (SPR), we observed a strong interaction between Hsp90 and different compositions of lipid. Hsp90 had a preference to bind with more unsaturated phospholipid species and the affinity was higher with negatively charged lipids than zwitterionic lipids. Increasing the mole fraction of cholesterol in the phospholipid led to a decrease of binding affinity to Hsp90. Circular dichroism (CD) spectroscopy of Hsp90 in PC membranes showed more α-helix structure than in aqueous buffer. The differential scanning calorimeter (DSC) and fluorescence polarization results showed Hsp90 could affect the transition temperature and fluidity of the bilayer. We postulate from these results that the association between Hsp90 and membranes may involve both electrostatic and hydrophobic force, and constitute a possible mechanism that modulates membrane lipid order during thermal fluctuations.  相似文献   

12.
Y Barenholz  N F Moore  R R Wagner 《Biochemistry》1976,15(16):3563-3570
The fluorescence probe 1,6-diphenyl-1,3,5-hexatriene was used to study and compare the dynamic properties of the hydrophobic region of vesicular stomatitis virus grown on L-929 cells, plasma membrane of L-929 cells prepared by two different methods, liposomes prepared from virus lipids and plasma membrane lipids, and intact L-929 cells. The rate of penetration of the probe into the hydrophobic region of the lipid bilayer was found to be much faster in the lipid vesicle bilayer as compared with the intact membrane, but in all cases the fluorescence anisotropy was constant with time. The L-cell plasma membranes, the vesicles prepared from the lipids derived from the plasma membranes, and intact cells are found to have much lower microviscosity values than the virus or virus lipid vesicles throughout a wide range of temperatures. The microviscosity of plasma membrane and plasma membrane lipid vesicles was found to depend on the procedure for plasma membrane preparation as the membranes prepared by different methods had different microviscosities. The intact virus and liposomes prepared from the virus lipids were found to have very similar microviscosity values. Plasma membrane and liposomes prepared from plasma membrane lipids also had similar microviscosity values. Factors affecting microviscosity in natural membranes and artificially mixed lipid membranes are discussed.  相似文献   

13.
Phospholipids are a diverse group of biomolecules consisting of a hydrophilic headgroup and two hydrophobic acyl tails. The nature of the head and length and saturation of the acyl tails are important for defining the biophysical properties of lipid bilayers. It has recently been shown that the membranes of certain yeast species contain high levels of unusual asymmetric phospholipids consisting of one long and one medium-chain acyl moiety, a configuration not common in mammalian cells or other well-studied model yeast species. This raises the possibility that structurally asymmetric glycerophospholipids impart distinctive biophysical properties to the yeast membranes. Previously, it has been shown that lipids with asymmetric length tails form a mixed interdigitated gel phase and exhibit unusual endotherm behavior upon heating and cooling. Here, however, we address physiologically relevant temperature conditions and, using atomistic molecular dynamics simulations and environmentally sensitive fluorescent membrane probes, characterize key biophysical parameters (such as lipid packing, diffusion coefficient, membrane thickness, and area per lipid) in membranes composed of both length-asymmetric glycerophospholipids and ergosterol. Interestingly, we show that saturated but asymmetric glycerophospholipids maintain membrane lipid order across a wide range of temperatures. We also show that these asymmetric lipids can substiture of unsaturated symmetric lipids in the phase behaviour of ternary lipid bilayers. This may allow cells to maintain membrane fluidity, even in environments that lack oxygen, which is required for the synthesis of unsaturated lipids and sterols.  相似文献   

14.
Pure coated vesicles have been prepared from the bovine adrenal cortex and two homogeneous populations have been separated, one of large diameter (100 nm) and one of small diameter (70 nm). The chemical composition in lipids and proteins of coated vesicles has been compared with that of partially purified plasma membranes and evidences a higher protein/lipid ratio and a higher concentration in phosphatidylethanolamine and unsaturated fatty acids. Evaluation of the lateral diffusion of pyrene in the lipid bilayer of coated vesicles as compared to uncoated vesicles evidences a slowing-down effect of clathrin. Measurements of lipids' rotational diffusion by time-resolved fluorescence indicate a decrease in the order parameter of the lipids in the coated vesicles due to clathrin. A hypothesis is proposed for a possible role of the clathrin coat in the concerted motion of lipids and proteins toward coated pits and in the mechanism of formation of coated vesicles. Separation of the large from the small coated vesicles made it possible to reveal different protein components in the two types of vesicle by electrophoresis and autoradiograms of the [γ-32P]adenosine triphosphate- (ATP-) treated vesicles. Visualisation of the low-density lipoprotein receptor by ligand blotting and enzyme-linked immunosorbent assay (ELISA) techniques indicates an increased low-density lipoprotein receptor binding capacity in small coated vesicles as compared to large ones and plasma membranes.  相似文献   

15.
Several studies have shown that the physical state of the phospholipid membrane has an important role in protein-membrane interactions, involving both electrostatic and hydrophobic forces. We have investigated the influence of the interaction of the calcium-depleted, (apo)-conformation of bovine α-lactalbumin (BLA) on the integrity of anionic glycerophospholipid vesicles by leakage experiments using fluorescence spectroscopy. The stability of the membranes was also studied by measuring surface tension/molecular area relationships with phospholipid monolayers. We show that the degree of unsaturation of the acyl chains and the proportion of charged phospholipid species in the membranes made of neutral and acidic glycerophospholipids are determinants for the association of BLA with liposomes and for the impermeability of the bilayer. Particularly, tighter packing counteracted interaction with BLA, while unsaturation—leading to looser packing—promoted interaction and leakage of contents. Equimolar mixtures of neutral and acidic glycerophospholipids were more permeable upon protein binding than pure acidic lipids. The effect of lipid structure on BLA-membrane interaction and bilayer integrity may throw new light on the membrane disrupting mechanism of a conformer of human α-lactalbumin (HAMLET) that induces death of tumour cells but not of normal cells.  相似文献   

16.
The rat ventral prostate plasma membranes incorporated acetate into total lipids, which was a time-dependent process. The acetate incorporation was mainly into phospholipids followed by cholesterol. The main phospholipids subclasses were choline and ethanolamine glycerophospholipids. Castration modified drastically both cholesterol-phospholipids and choline glycerophospholipids-ethanolamine glycerophospholipids ratios. These effects of castration were reversed after testosterone treatment, which could suggest an influence of this hormone in the modification of some lipid classes into cellular membrane.  相似文献   

17.
A Percot  X X Zhu  M Lafleur 《Biopolymers》1999,50(6):647-655
In an effort to develop a polymer/peptide assembly for the immobilization of lipid vesicles, we have made and characterized four water-soluble amphiphilic peptides designed to associate spontaneously and strongly with lipid vesicles without causing significant leakage from anchored vesicles. These peptides have a primary amphiphilic structure with the following sequences: AAAAAAAAAAAAWKKKKKK, AALLLAAAAAAAAAAAAAAAAAAAWKKKKKK, and KKAALLLAAAAAAAAAAAAAAAAAAAWKKKKKK and its reversed homologue KKKKKKWAAAAA AAAAAAAAAAAAAALLLAAKK. Two of the four peptides have their hydrophobic segments capped at both termini with basic residues to stabilize the transmembrane orientation and to increase the affinity for negatively charged vesicles. We have studied the secondary structure and the membrane affinity of the peptides as well as the effect of the different peptides on the membrane permeability. The influence of the hydrophobic length and the role of lysine residues were clearly established. First, a hydrophobic segment of 24 amino acids, corresponding approximately to the thickness of a lipid bilayer, improves considerably the affinity to zwitterionic lipids compared to the shorter one of 12 amino acids. The shorter peptide has a low membrane affinity since it may not be long enough to adopt a stable conformation. Second, the presence of lysine residues is essential since the binding is dominated by electrostatic interactions, as illustrated by the enhanced binding with anionic lipids. The charges at both ends, however, prevent the peptide from inserting spontaneously in the bilayer since it would involve the translocation of a charged end through the apolar core of the bilayer. The direction of the amino acid sequence of the peptide has no significant influence on its behavior. None of these peptides perturbs membrane permeability even at an incubation lipid to peptide molar ratio of 0.5. Among the four peptides, AALLLAAAAAAAAAAAAAAAAAAAWKKKKKK is identified as the most suitable anchor for the immobilization of lipid vesicles.  相似文献   

18.
The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion.  相似文献   

19.
We recently showed that ligand-mediated cross-linking of FcepsilonRI, the high-affinity receptor for immunoglobulin E, on RBL-2H3 mast cells results in its co-isolation with detergent-resistant membranes (DRM) and its consequent tyrosine phosphorylation by the co-localized tyrosine kinase Lyn that is a critical early event in signaling by this receptor [Field et al. (1997) J. Biol. Chem. 272, 4276-4280]. As part of efforts to determine the structural bases for these interactions, we examined the phospholipid composition of DRM vesicles isolated from RBL-2H3 cells under conditions that preserve FcepsilonRI association. We used positive and negative mode electrospray Fourier transform ion cyclotron resonance mass spectrometry to compare quantitatively the phospholipid composition of isolated DRM to that of total cell lipids and to a plasma membrane preparation. From these analyses, over 90 different phospholipid species were spectrally resolved and unambiguously identified; more than two-thirds of these were determined with a precision of +/-0.5% (absolute) or less. Quantitative characterization of lipid profiles shows that isolated DRM are substantially enriched in sphingomyelin and in glycerophospholipids with a higher degree of saturation as compared to total cellular lipids. Plasma membrane vesicles isolated from RBL-2H3 cells by chemically induced blebbing exhibit a degree of phospholipid saturation that is intermediate between DRM and total cellular lipids, and significant differences in the headgroup distribution between DRM and plasma membranes vesicles are observed. DRM from cells with cross-linked FcepsilonRI exhibit a larger ratio of polyunsaturated to saturated and monounsaturated phospholipids than those from unstimulated cells. Our results support and strengthen results from previous studies suggesting that DRM have a lipid composition that promotes liquid-ordered structure. Furthermore, they demonstrate the potential of mass spectrometry for examining the role of membrane structure in receptor signaling and other cellular processes.  相似文献   

20.
Heat shock proteins play a major role in the process of protein folding, and they have been termed molecular chaperones. Two members of the Hsp70 family, Hsc70 and Hsp70, have a high degree of sequence homology. But they differ in their expression pattern. Hsc70 is constitutively expressed, whereas Hsp70 is stress inducible. These 2 proteins are localized in the cytosol and the nucleus. In addition, they have also been observed in close proximity to cellular membranes. We have recently reported that Hsc70 is capable of interacting with a lipid bilayer forming ion-conductance channels. In the present study, we found that both Hsc70 and Hsp70 interact with lipids and can be differentiated by their characteristic induction of liposome aggregation. These proteins promote the aggregation of phosphatidylserine liposomes in a time- and protein concentration-dependent manner. Although both proteins are active in this process, the level and kinetics of aggregation are different between them. Calcium ions enhance Hsc70 and Hsp70 liposome aggregation, but the effect is more dramatic for Hsc70 than for Hsp70. Addition of adenosine triphosphate blocks liposome aggregation induced by both proteins. Adenosine diphosphate (ADP) also blocks Hsp70-mediated liposome aggregation. Micromolar concentrations of ADP enhance Hsc70-induced liposome aggregation, whereas at millimolar concentrations the nucleotide has an inhibitory effect. These results confirm those of previous studies indicating that the Hsp70 family can interact with lipids directly. It is possible that the interaction of Hsp70s with lipids may play a role in the folding of membrane proteins and the translocation of polypeptides across membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号