首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Berger A  Meinhard J  Petersen M 《Planta》2006,224(6):1503-1510
Purification of rosmarinic acid synthase (hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyltransferase) from suspension cells of Coleus blumei Benth. (Lamiaceae) by fractionated ammonium sulphate precipitation, hydrophobic interaction chromatography and two affinity chromatography steps led to the identification of peptide sequences, which enabled a PCR-based approach to isolate the full-length cDNA encoding this enzyme. The open reading frame of the cDNA had a length of 1290 base pairs encoding a protein of 430 amino acid residues with a molecular mass of 47,932 Da with typical characteristics of an acyltransferase of the BAHD superfamily. The cDNA was heterologously expressed in Escherichia coli. The enzyme displayed the activity of rosmarinic acid synthase using 4-coumaroyl- and caffeoyl-coenzyme A and 4-hydroxyphenyllactate as well as 3.4-dihydroxyphenyllactate as substrates. Shikimic acid and quinic acid were not able to serve as hydroxycinnamoyl acceptors. This therefore is the first report of the cDNA-cloning of a rosmarinic acid synthase.  相似文献   

2.
3.
Shikimic acid is an important metabolic intermediate with various applications. This paper presents a novel control strategy for the construction of shikimic acid producing strains, without completely blocking the aromatic amino acid biosynthesis pathways. Growth phase-dependent expression and gene deletion was performed to regulate the aroK gene expression in the shikimic acid producing Escherichia coli strain, SK4/rpsM. In this strain, the aroL and aroK genes were deleted, and the aroB, aroG*, ppsA, and tktA genes were overexpressed. The relative amount of shikimic acid that accumulated in SK4/rpsM was 1.28-fold higher than that in SK4/pLac. Furthermore, a novel shikimic acid production pathway, combining the expression of the dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) enzyme from woody plants, was constructed in E. coli strains. The results demonstrated that a growth phase-dependent control of the aroK gene leads to higher SA accumulation (5.33 g/L) in SK5/pSK6. This novel design can achieve higher shikimic acid production by using the same amount of medium used by the current methods and can also be widely used for modifying other metabolic pathways.  相似文献   

4.
Sander M  Petersen M 《Planta》2011,233(6):1157-1171
cDNAs and genes encoding a hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyltransferase (CbRAS; rosmarinic acid synthase) and a hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (CbHST) were isolated from Coleus blumei Benth. (syn. Solenostemon scutellarioides (L.) Codd; Lamiaceae). The proteins were expressed in E. coli and the substrate specificity of both enzymes was tested. CbRAS accepted several CoA-activated phenylpropenoic acids as donor substrates and d-(hydroxy)phenyllactates as acceptors resulting in ester formation while shikimate and quinate were not accepted. Unexpectedly, amino acids (d-phenylalanine, d-tyrosine, d-DOPA) also yielded products, showing that RAS can putatively catalyze amide formation. CbHST was able to transfer cinnamic, 4-coumaric, caffeic, ferulic as well as sinapic acid from CoA to shikimate but not to quinate or acceptor substrates utilized by CbRAS. In addition, 3-hydroxyanthranilate, 3-hydroxybenzoate and 2,3-dihydroxybenzoate were used as acceptor substrates. The reaction product with 3-aminobenzoate putatively is an amide. For both enzymes, structural requirements for donor and acceptor substrates were deduced. The acceptance of unusual acceptor substrates by CbRAS and CbHST resulted in the formation of novel compounds. The rather relaxed substrate as well as reaction specificity of both hydroxycinnamoyltransferases opens up possibilities for the evolution of novel enzymes forming novel secondary metabolites in plants and for the in vitro formation of new compounds with putatively interesting biological activities.  相似文献   

5.
Auxotrophic mutants of Escherichia coli W or K12 blocked before shikimic acid in the aromatic biosynthetic pathway grew poorly on shikimic acid as sole aromatic supplement. This poort growth response was correlated with a relatively poor ability to transport shikimic acid. If citrate was present in the growth medium (as it is in some commonly used basal media) the growth of some of the E. coli K12 mutants on shikimate was further reduced.Mutants were derived from pre-shikimate auxotrophs which grew rapidly on media containing shikimic acid. These derivatives all had an increased ability to transport shikimic acid. Thus, it is proposed that the growth on shikimate observed in the parent cells is restricted by their relatively poor uptake of shikimate from the medium and that this restriction may be removed by a mutation which enhances shikimate transport.Transduction analysis of the mutations which enhanced utilization and transport of shikimic acid by E. coli K12 strains indicated at least two classes. Class 1 was about 20% contransduced with the histidine region of the E. coli K12 chromosome and appeared to be coincident with a known shikimate transport locus, shiA. Class 2 was not contransduced with his. The locus (or loci) of this class is unknown. Kinetic measurements suggested that bot classes had shikimate uptake systems derived from the wild-type system. Two class 1 mutants had increased levels of otherwise unaltered wild-type transport while one class 2 mutant had an altered Michaelis constant (Km) for shikimate transport.  相似文献   

6.

Background

Classic metabolic engineering strategies often induce significant flux imbalances to microbial metabolism, causing undesirable outcomes such as suboptimal conversion of substrates to products. Several mathematical frameworks have been developed to understand the physiological and metabolic state of production strains and to identify genetic modification targets for improved bioproduct formation. In this work, a modeling approach was applied to describe the physiological behavior and the metabolic fluxes of a shikimic acid overproducing Escherichia coli strain lacking the major glucose transport system, grown on complex media.

Results

The obtained flux distributions indicate the presence of high fluxes through the pentose phosphate and Entner-Doudoroff pathways, which could limit the availability of erythrose-4-phosphate for shikimic acid production even with high flux redirection through the pentose phosphate pathway. In addition, highly active glyoxylate shunt fluxes and a pyruvate/acetate cycle are indicators of overflow glycolytic metabolism in the tested conditions. The analysis of the combined physiological and flux response surfaces, enabled zone allocation for different physiological outputs within variant substrate conditions. This information was then used for an improved fed-batch process designed to preserve the metabolic conditions that were found to enhance shikimic acid productivity. This resulted in a 40% increase in the shikimic acid titer (60 g/L) and 70% increase in volumetric productivity (2.45 gSA/L*h), while preserving yields, compared to the batch process.

Conclusions

The combination of dynamic metabolic modeling and experimental parameter response surfaces was a successful approach to understand and predict the behavior of a shikimic acid producing strain under variable substrate concentrations. Response surfaces were useful for allocating different physiological behavior zones with different preferential product outcomes. Both model sets provided information that could be applied to enhance shikimic acid production on an engineered shikimic acid overproducing Escherichia coli strain.
  相似文献   

7.
8.
Glycerol has become an attractive substrate for bio-based production processes. However, Escherichia coli, an established production organism in the biotech industry, is not able to grow on glycerol under strictly anaerobic conditions in defined minimal medium due to redox imbalance. Despite extensive research efforts aiming to overcome these limitations, anaerobic growth of wild-type E. coli on glycerol always required either the addition of electron acceptors for anaerobic respiration (e.g. fumarate) or the supplementation with complex and relatively expensive additives (tryptone or yeast extract). In the present work, driven by model-based calculations, we propose and validate a novel and simple strategy to enable fermentative growth of E. coli on glycerol in defined minimal medium. We show that redox balance could be achieved by uptake of small amounts of acetate with subsequent reduction to ethanol via acetyl-CoA. Using a directed laboratory evolution approach, we were able to confirm this hypothesis and to generate an E. coli strain that shows, under anaerobic conditions with glycerol as the main substrate and acetate as co-substrate, robust growth (μ = 0.06 h−1), a high specific glycerol uptake rate (10.2 mmol/gDW/h) and an ethanol yield close to the theoretical maximum (0.92 mol per mol glycerol). Using further stoichiometric calculations, we also clarify why complex additives such as tryptone used in previous studies enable E. coli to achieve redox balance. Our results provide new biological insights regarding the fermentative metabolism of E. coli and offer new perspectives for sustainable production processes based on glycerol.  相似文献   

9.
Arsenate (As(V)) transport into plant cells has been well studied. A study on rice (Oryza sativa L.) showed that arsenite is transported across the plasma membrane via glycerol transporting channels. Previous studies reported that the dimethylarsinic acid (DMAA) and monomethylarsonic acid (MMAA) uptake in duckweed (Spirodela polyrhiza L.) differed from that of As(V), and was unaffected by phosphate (H2PO4). This article reports the transport mechanisms of DMAA and MMAA in rice roots. Linear regression analysis showed that the DMAA and MMAA uptake in rice roots increased significantly (p ≤ 0.0002 and ≤0.0001 for DMAA and MMAA, respectively) with the increase of exposure time. Concentration-dependent influx of DMAA and MMAA showed that the uptake data were well described by Michaelis-Menten kinetics. The MMAA influx was higher than that of DMAA. The DMAA and MMAA uptake in rice roots were decreased significantly (p ≤ 0.0001 and ≤0.0077 for DMAA and MMAA, respectively) with the increase of glycerol concentration indicating that DMAA and MMAA were transported into rice roots using the same mechanisms of glycerol. Glycerol is transported into plant cells by aquaporins, and DMAA and MMAA are transported in a dose-dependent manner of glycerol which reveals that DMAA and MMAA are transported into rice roots through glycerol transporting channels. The DMAA and MMAA concentration in the solution did not affect the inhibition of their uptake rate by glycerol.  相似文献   

10.
14C-labelled shikimic acid and double labelled shikimic acid tritiated stereospecifically at C-6 are incorporated into 3-(3-carboxyphenyl)alanine, 3-(3-carboxyl-4-hydroxyphenyl)alanine, phenylalanine, and tyrosine in Resda lutea L., Reseda odoratta L., Iris x Hollandica cv. Prof. Blauw, and Iris x hollandica cv. Wedgwood. The experiments with 14C-labelled shikimic acid confirm that the aromatic carboxyl groups and rings in 3-(3-carboxyphenyl)-alanine and 3-(3-carboxy-4-hydroxyphenyl)alanine derive from the carboxyl group and ring in shikimic acid whereas the experiments with double labelled shikimic acid demonstrate that the pro-6S-hydrogen atom is retained and the pro-6R-hydrogen atom lost in the biosynthesis of 3-(3-carboxyphenyl)alanine, phenylalanine, and tyrosine in the plants used. 3H was located in the ortho-position in the aromatic rings of phenylalanine and tyrosine but in a position para to the alanine side chain of 3-(3-cabroxyphenyl)alanine. No 3H was found in 3-(3-carboxy-4-hydroxyphenyl)alanine. This supports a derivation of the last two compounds from chorismic acidvia isochorismic acid, isoprephenic acid, and 3′-carboxyphenylpyruvic acid and 3′-carboxy-4′-hydroxyphenylpyruvic acid. The 3H/14 C ratio in 3-(3-carboxyphenyl)alanine was found higher than in the precursor used. This isotope effect must operate by competition between the pathways from isoprephenic acid to 3′-carboxyphenylpyruvic acid and to 3′-carboxy-4′-hydroxyphenylpyruvic acid. The proposed biosynthetic pathways for the two carboxy-substituted amino acids are in agreement with their distribution patterns in the plant kingdom and suggest that they may derive from minor changes of enzymes involved in the general pathways of aromatic biosynthesis.  相似文献   

11.
Two bioactive O-methylflavonoids, sakuranetin (7-O-methylnaringenin) and ponciretin (7-O-methylnaringenin), were synthesized in Escherichia coli. Sakuranetin inhibits germination of Magnaporthe grisea, and ponciretin is a potential inhibitor of Helicobacter pylori. To achieve this, we reconstructed the naringenin biosynthesis pathway in E. coli. First, the shikimic acid pathway, which leads to the biosynthesis of tyrosine, was engineered in E. coli to increase the amount of available tyrosine. Second, several genes for the biosynthesis of ponciretin and sakuranetin such as tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), chalcone synthase (CHS), and O-methyltransferase (OMT) were overexpressed. In order to increase the supply the Coenzyme A (CoA), one gene (icdA, isocitrate dehydrogenase) was deleted. Using these strategies, we synthesized ponciretin and sakuranetin from glucose in E. coli at the concentration of 42.5 mg/L and 40.1 mg/L, respectively.  相似文献   

12.
4-Ethylphenol (4-EP) is an industrially versatile commodity chemical widely applied in the pharmaceutical and food industries. In this study, an artificial biosynthetic pathway was constructed in Escherichia coli for production of 4-ethylphenol from simple sources of carbon. The pathway consists of the tal, pad and vpr genes, which encode tyrosine ammonia lyase (TAL), phenolic acid decarboxylase (PAD) and vinylphenol reductase (VPR), respectively. Our results confirmed that the TAL from Saccharothrix espanaensis possessed higher catalytic activity than the TAL from Rhodobacter sphaeroides for biosynthesis of p-hydroxycinnamic acid. The low solubility of Lactobacillus plantarum VPR (LpVPR) in E. coli was a critical factor limiting its availability in the biosynthetic pathway. The solubility of LpVPR was improved by E. coli strain and induction condition optimization. Under the optimized conditions, the engineered E. coli TransB-TPV produced as high as 110 mg/L 4-EP at 37 ℃ in Terrific Broth (TB) medium with glycerol as carbon source after cultivation of 48 h. This study provided a new and feasible strategy for biosynthesis of 4-EP from simple sugars, which may provide a basis for future large-scale industrial application.  相似文献   

13.
Kang Z  Du L  Kang J  Wang Y  Wang Q  Liang Q  Qi Q 《Bioresource technology》2011,102(11):6600-6604
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.  相似文献   

14.
Shikimic acid has various pharmaceutical and industrial applications. It is the sole chemical building block for the antiviral drug oseltamivir (Tamiflu®) and one of the potent pharmaceutical intermediates with three chiral centres. Here we report a modified strain of Bacillus megaterium with aroK (shikimate kinase) knock out to block the aromatic biosynthetic pathway downstream of shikimic acid. Homologous recombination based gene disruption approach was used for generating aroK knock out mutant of B. megaterium. Shake flask cultivation showed shikimic acid yield of 2.98 g/L which is ~6 times more than the wild type (0.53 g/L). Furthermore, the shikimate kinase activity was assayed and it was 32 % of the wild type. Effect of various carbon sources on the production of shikimic acid was studied and fructose (4 %, w/v) was found to yield maximum shikimic acid (4.94 g/L). The kinetics of growth and shikimic acid production by aroK knockout mutant was studied in 10 L bioreactor and the yield of shikimic acid had increased to 6 g/L which is ~12 fold higher over the wild type. It is evident from the results that aroK gene disruption had an immense effect in enhancing the shikimic acid production.  相似文献   

15.
Availability, low prices, and a high degree of reduction make glycerol an ideal feedstock to produce reduced chemicals and fuels via anaerobic fermentation. Although glycerol metabolism in Escherichia coli had been thought to be restricted to respiratory conditions, we report here the utilization of this carbon source in the absence of electron acceptors. Cells grew fermentatively on glycerol and exhibited exponential growth at a maximum specific growth rate of 0.040 ± 0.003 h−1. The fermentative nature of glycerol metabolism was demonstrated through studies in which cell growth and glycerol utilization were observed despite blocking several respiratory processes. The incorporation of glycerol in cellular biomass was also investigated via nuclear magnetic resonance analysis of cultures in which either 50% U-13C-labeled or 100% unlabeled glycerol was used. These studies demonstrated that about 20% of the carbon incorporated into the protein fraction of biomass originated from glycerol. The use of U-13C-labeled glycerol also allowed the unambiguous identification of ethanol and succinic, acetic, and formic acids as the products of glycerol fermentation. The synthesis of ethanol was identified as a metabolic determinant of glycerol fermentation; this pathway fulfills energy requirements by generating, in a redox-balanced manner, 1 mol of ATP per mol of glycerol converted to ethanol. A fermentation balance analysis revealed an excellent closure of both carbon (~95%) and redox (~96%) balances. On the other hand, cultivation conditions that prevent H2 accumulation were shown to be an environmental determinant of glycerol fermentation. The negative effect of H2 is related to its metabolic recycling, which in turn generates an unfavorable internal redox state. The implications of our findings for the production of reduced chemicals and fuels were illustrated by coproducing ethanol plus formic acid and ethanol plus hydrogen from glycerol at yields approaching their theoretical maximum.  相似文献   

16.
The unbalanced distribution of carbon flux in microbial cell factories can lead to inefficient production and poor cell growth. Uncoupling cell growth and chemical synthesis can therefore improve microbial cell factory efficiency. Such uncoupling, which requires precise manipulation of carbon fluxes, can be achieved by up-regulating or down-regulating the expression of enzymes of various pathways. In this study, a dynamic turn-off switch (dTFS) and a dynamic turn-on switch (dTNS) were constructed using growth phase-dependent promoters and degrons. By combining the dTFS and dTNS, a bifunctional molecular switch that could orthogonally regulate two target proteins was introduced. This bifunctional molecular switch was used to uncouple cell growth from shikimic acid and D-glucaric acid synthesis, resulting in the production of 14.33 g/L shikimic acid and the highest reported productivity of D-glucaric acid (0.0325 g/L/h) in Escherichia coli MG1655. This proved that the bifunctional molecular switch could rewire carbon fluxes by controlling target protein abundance.  相似文献   

17.
To isolate genes encoding coenzyme B12-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity screen, which was based on complementation of a constructed dehydratase-negative Escherichia coli strain. In this way, two positive E. coli clones out of 560,000 tested clones were obtained. In addition, screening was performed by colony hybridization with dehydratase-specific DNA fragments as probes. The screening of 158,000 E. coli clones by this method yielded five positive clones. Two of the plasmids (pAK6 and pAK8) recovered from the seven positive clones contained genes identical to those encoding the glycerol dehydratase of Citrobacter freundii and were not studied further. The remaining five plasmids (pAK2 to -5 and pAK7) contained two complete and three incomplete dehydratase-encoding gene regions, which were similar to the corresponding regions of enteric bacteria. Three (pAK2, -3, and -7) coded for glycerol dehydratases and two (pAK4 and -5) coded for diol dehydratases. We were able to perform high-level production and purification of three of these dehydratases. The glycerol dehydratases purified from E. coli Bl21/pAK2.1 and E. coli Bl21/pAK7.1 and the complemented hybrid diol dehydratase purified from E. coli Bl21/pAK5.1 were subject to suicide inactivation by glycerol and were cross-reactivated by the reactivation factor (DhaFG) for the glycerol dehydratase of C. freundii. The activities of the three environmentally derived dehydratases and that of glycerol dehydratase of C. freundii with glycerol or 1,2-propanediol as the substrate were inhibited in the presence of the glycerol fermentation product 1,3-propanediol. Taking the catalytic efficiency, stability against inactivation by glycerol, and inhibition by 1,3-propanediol into account, the hybrid diol dehydratase produced by E. coli Bl21/pAK5.1 exhibited the best properties of all tested enzymes for application in the biotechnological production of 1,3-propanediol.  相似文献   

18.
《Phytochemistry》1987,26(11):2919-2922
New hydroxycinnamic acid esters have been isolated from the cotyledons of Amaranthus cruentus. (E)-Caffeoylisocitric acid was identified as the major constituent and p-coumaroyl-and feruloylisocitric acids as minor ones on the basis of 1H and 13C NMR spectroscopy. FAB mass spectrometry, high-performance liquid and thin-layer chromatography. The structure of caffeoylisocitric acid was confirmed by chromatographic comparison with synthetic material. The accumulation of the new hydroxycinnamoylisocitric acids and their enzymatic synthesis via the hydroxycinnamoyl-CoA thioesters as acyl donors are described. The caffeoyl-CoA-dependent acyltransferase showed a rapid transient increase in activity reaching ca 5 pkat per cotyledon pair (i.e. ca 390 pkat per mg protein) at day six of seedling development.  相似文献   

19.
Based on elementary mode analysis, an Escherichia coli strain was designed for efficient conversion of glycerol to ethanol. By using nine gene knockout mutations, the functional space of the central metabolism of E. coli was reduced from over 15,000 possible pathways to a total of 28 glycerol-utilizing pathways that support cell function. Among these pathways are eight aerobic and eight anaerobic pathways that do not support cell growth but convert glycerol into ethanol with a theoretical yield of 0.50 g ethanol/g glycerol. The remaining 12 pathways aerobically coproduce biomass and ethanol from glycerol. The optimal ethanol production depends on the oxygen availability that regulates the two competing pathways for biomass and ethanol production. The coupling between cell growth and ethanol production enabled metabolic evolution of the designed strain through serial dilution that resulted in strains with improved ethanol yields and productivities. In defined medium, the evolved strain can convert 40 g/liter of glycerol to ethanol in 48 h with 90% of the theoretical ethanol yield. The performance of the designed strain is predicted by the property space of remaining elementary modes.With the recent rising prices of fossil fuels, development of alternative renewable fuels, such as biodiesel, has become attractive. However, the increase in biodiesel production generates a surplus of crude glycerol since this compound is an inevitable waste by-product resulting directly from the transesterification of vegetable oils or animal fats. For every 3 mol of biodiesel produced, 1 mol of glycerol (about 5 to 10% weight equivalent of biodiesel) is generated. To maximize the full economic potential of the biodiesel process, it is important to convert crude glycerol into useful chemicals (9, 25).Both chemical conversion and biological conversion of crude glycerol into value-added products have been considered. For instance, chemical conversion based on the etherification of glycerol with either alcohols (methanol or ethanol) or alkenes (isobutene or 2-methylpropene) can produce useful fuels or solvents, or steam reforming of glycerol can result in methanol and hydrogen production (7). Biological conversion utilizes species belonging to the Enterobacteriaceae family, such as Klebsiella pneumoniae (11), Citrobacter freundii (5), Clostridium butyricum (4), and Pantoea agglomerans (3), to convert glycerol to 1,3-propanediol by fermentation.Even though Escherichia coli belongs to the family Enterobacteriaceae, it cannot ferment glycerol due to a lack of the dha regulon encoding glycerol dehydratase (dhaB) and 1,3-propanediol oxidoreductase (dhaT), which constitute the fermentative 1,3-propanediol-producing pathway (18). However, introduction of this pathway from K. pneumoniae into E. coli can facilitate glycerol fermentation (18), presumably because the redox potential is balanced. In fact, it is well documented that a wild-type E. coli strain cannot grow on glycerol anaerobically in defined medium except after addition of specific electron acceptors (18). Such electron acceptors can come from external sources, including nitrate, nitrite, fumarate, dimethyl sulfoxide, or trimethylalamine-N-oxide, or from internal sources through added fermentative pathways, such as the 1,3-propanediol-producing pathway.A recent study suggested the feasibility of fermenting glycerol into fuels and other reduced chemicals by inducing the dormant, native 1,2-propanediol fermentative pathway in E. coli without using external electron acceptors (10, 14). This approach, however, faces several critical challenges, such as low specific growth rates resulting in low chemical productivities and coproduction of unavoidable by-products, such as 1,2-propanediol. The reported specific growth rate appears to limit any practical application since a minimal doubling time of about 17 h results in consumption of only 8 to 10 g/liter glycerol after 110 h (10, 14). In addition, glycerol fermentation apparently worked only when complex components, such as yeast extract, tryptone, or amino acids that are required for biomass synthesis, were added to the medium (10, 14).Here, we took a different approach by employing oxygen as the electron acceptor in well-defined microaerobic growth conditions. We used elementary mode (EM) analysis to rationally design an E. coli cell with minimized metabolic functionality tailored to efficiently convert glycerol to ethanol under these microaerobic growth conditions. EM analysis is a metabolic pathway analysis tool that identifies all pathway options in a metabolic network (16). Knowledge of these pathway options allows rational implementation of only the efficient pathways of interest by removing the inefficient pathways, resulting in a cell with minimal but specialized functionality (20-22, 24). Furthermore, the cell developed is engineered to tightly couple cell growth and ethanol production. This unique characteristic facilitates metabolic evolution of the minimal cell to improve ethanol productivity because faster-growing cells also produce ethanol at a higher rate. We demonstrate here that the performance of the designed strain falls into the range defined by the EMs that are possible.  相似文献   

20.
The pduP gene encodes a propionaldehyde dehydrogenase (PduP) was investigated for the role in 3-hydroxypropionic acid (3-HP) glycerol metabolism in Klebsiella pneumoniae. The enzyme assay showed that cell extracts from a pduP mutant strain lacked measurable dehydrogenase activity. Additionally, the mutant strain accumulated the cytotoxic intermediate metabolite 3-hydroxypropionaldehyde (3-HPA), causing both cell death and a lower final 3-HP titer. Ectopic expression of pduP restored normal cell growth to mutant. The enzymatic property of recombinant protein from Escherichia coli was examined, exhibiting a broad substrate specificity, being active on 3-HPA. The present work is thus the first to demonstrate the role of PduP in glycerol metabolism and biosynthesis of 3-HP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号