首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Most terrestrial plants form green leaf volatiles (GLVs), which are mainly composed of six-carbon (C6) compounds. In our effort to study the distribution of the ability of lipoxygenase (LOX) to form GLVs, we found that a liverwort, Marchantia polymorpha, formed n-hexanal and (Z)-3-hexenal. Some LOXs execute a secondary reaction to form short chain volatiles. One of the LOXs from M. polymorpha (MpLOX7) oxygenized arachidonic and α-linolenic acids at almost equivalent efficiency and formed C6-aldehydes during its catalysis; these are likely formed from hydroperoxides of arachidonic and α-linolenic acids, with a cleavage of the bond between carbon at the base of the hydroperoxy group and carbon of double bond, which is energetically unfavorable. These lines of evidence suggest that one of the LOXs in liverwort employs an unprecedented reaction to form C6 aldehydes as by-products of its reaction with fatty acid substrates.  相似文献   

2.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

3.
Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 α-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, α-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred α-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from α-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.  相似文献   

4.
Lipoxygenases (LOXs) are a family of non-heme iron-containing dioxygenases that catalyze the hydroperoxidation of lipids, containing a cis,cis-1,4-pentadiene structure. A rapid and reliable colorimetric assay for determination of the activity of three human functional lipoxygenase isoforms (5-lipoxygenase, platelet 12-lipoxygenase, and 15-lipoxygenase-1) is developed in this article. In the new assay, LOX-derived lipid hydroperoxides oxidize the ferrous ion (Fe2+) to the ferric ion (Fe3+), the latter of which binds with thiocyanate (SCN) to generate a red ferrithiocyanate (FTC) complex. The absorbance of the FTC complex can be easily measured at 480 nm. Because 5-LOX can be stimulated by many cofactors, the effects of its cofactors (Ca2+, ATP, dithiothreitol, glutathione, l-α-phosphatidylcholine, and ethylenediaminetetraacetic acid) on the color development of the FTC complex are also determined. The assay is adaptive for purified LOXs and cell lysates containing active LOXs. We use the new colorimetric assay in a 96-well format to evaluate several well-known LOX inhibitors, the IC50 values of which are in good agreement with previously reported data. The reliability and reproducibility of the assay make it useful for in vitro screening for inhibitors of LOXs and, therefore, should accelerate drug discovery for clinical application.  相似文献   

5.
Oxygenation of the 5-lipoxygenase product 5S-hydroxyeicosatetraenoic acid by cyclooxygenase-2 yields a bicyclic di-endoperoxide. The di-endoperoxide contains two peroxides spanning from carbons 9 to 11 and 8 to 12, and two hydroxyls at carbons 5 and 15 of arachidonic acid (Schneider C., et al. 2006. Convergent oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2. J. Am. Chem. Soc. 128: 720). Here, we report that treatment of the di-endoperoxide with hematin or ferrous chloride results in cleavage of both peroxide O-O bonds and of the bonds between the carbons that carry the peroxide groups, producing the aldehydes 4-hydroxy-2E-nonenal (4-HNE), 8-oxo-5S-hydroxy-6E-octenoic acid, and malondialdehyde (MDA). The hematin- and ferrous iron-catalyzed transformation of the di-endoperoxide proceeded with a similar yield of products as the cleavage of the prostaglandin endoperoxide PGH2 to 12S-hydroxy-5Z,8E,10E-heptadecatrienoic acid and MDA. Chiral phase HPLC analysis of the 4-HNE cleavage product showed greater than 98% 4S and thus established the S configuration of the 15-carbon of the di-endoperoxide that had not previously been assigned. This transformation of the 5-lipoxygenase/cyclooxygenase-2 derived di-endoperoxide invokes the possibility of a novel pathway to formation of the classic lipid peroxidation products 4-HNE and MDA.  相似文献   

6.
Biosynthesis of 5,15-dihydroxyeicosatetraenoic acid (5,15-diHETE) in leukocytes involves consecutive oxygenation of arachidonic acid by 5-lipoxygenase (LOX) and 15-LOX in either order. Here, we analyzed the contribution of cyclooxygenase (COX)-2 to the biosynthesis of 5,15-diHETE and 5,11-diHETE in isolated human leukocytes activated with lipopolysaccharide and calcium ionophore A23187. Transformation of arachidonic acid was initiated by 5-LOX providing 5S-HETE as a substrate for COX-2 forming 5S,15S-diHETE, 5S,15R-diHETE, and 5S,11R-diHETE as shown by LC/MS and chiral phase HPLC analyses. The levels of 5,15-diHETE were 0.45 ± 0.2 ng/106 cells (mean ± SEM, n = 6), reaching about half the level of LTB4 (1.3 ± 0.5 ng/106 cells, n = 6). The COX-2 specific inhibitor NS-398 reduced the levels of 5,15-diHETE to below 0.02 ng/106 cells in four of six samples. Similar reduction was achieved by MK-886, an inhibitor of 5-LOX activating protein but the above differences were not statistically significant. Aspirin treatment of the activated cells allowed formation of 5,15-diHETE (0.1 ± 0.05 ng/106 cells, n = 6) but, as expected, abolished formation of 5,11-diHETE. The mixture of activated cells also produced 5S,12S-diHETE with the unusual 6E,8Z,10E double bond configuration, implicating biosynthesis by 5-LOX and 12-LOX activity rather than by hydrolysis of the leukotriene A4-epoxide. Exogenous octadeuterated 5S-HETE and 15S-HETE were converted to 5,15-diHETE, implicating that multiple oxygenation pathways of arachidonic acid occur in activated leukocytes. The contribution of COX-2 to the biosynthesis of dihydroxylated derivatives of arachidonic acid provides evidence for functional coupling with 5-LOX in activated human leukocytes.  相似文献   

7.
A lipoxygenase was purified 300-fold from a homogenate supernatant of ripe tomato fruits by fractionated ammonium sulfate precipitation and anion exchange fast protein liquid chromatography. The specific linoleate oxygenase activity of the final enzyme preparation was 1300 nkat per mg protein at pH 6.8 and 25°C in the absence of any detergent. The enzyme oxygenated linoleic acid and α-linolenic acid at comparable rates, whereas γ-linolenic acid, arachidonic acid, 11,14-eicosadienoic acid and 11,14,17-eicosatrienoic acid were poor substrates. Linoleic acid was converted to 9(S)-hydroperoxy-10E,12Z-octadecadienoic acid, whereas 5(S)-HpETE, 11(S)-HpETE and 8(S)-HpETE were identified as major oxygenation products from arachidonic acid. The tomato lipoxygenase did not react with either dilinoleyl phosphatidylcholine or the lipid extract from beef heart mitochondria. The possible biological importance of the reaction of tomato lipoxygenase with arachidonic acid is discussed.  相似文献   

8.
Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ2 and PGA2, cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta.  相似文献   

9.
10.
Rainbow trout gill filaments generated a wide range of eicosanoid products following calcium ionophore challenge. The putative lipoxygenase products were separated by reverse phase high performance liquid chromatography (RP-HPLC), while prostanoids were quantified by enzyme immunoassay. Three main monohydroxy compounds containing conjugated dienes were observed after RP-HPLC namely 12-(S) hydroxyeicosatetraenoic acid (12-HETE), 12-(S) hydroxyeicosapentaenoic acid (12-HEPE) and 14-(S) hydroxydocosahexaenoic acid (14-HDHE), derived from endogenous arachidonic, eicosapentaenoic and docosahexaenoic acids, respectively. Their identification was confirmed by mass spectrometry. A further five compounds containing conjugated trienes were also observed but in lesser amounts. One of these products was identified as 8,15-dihydroxyeicosatetraenoic acid (8,15-DiHETE) based on its UV spectrum, co-elution with authentic standard on RP-HPLC and mass spectrometry. Overall, the generation of these products suggests the presence of 12- and possibly 15-lipoxygenase activities in trout gill acting on endogenous sources of fatty acid. To determine if the various cell types in trout gill had differing eicosanoid generating potential, gills were disrupted and the resultant cell suspensions separated by density gradient centrifugation. Following this three bands were formed on the gradients and the cell populations from these were characterised using periodic acid Schiff's (PAS) reactivity for mucosubstances, haematoxylin and eosin staining, and immunoreactivity with both monoclonal and polyclonal antibodies. The first band consisted of polygonal cells and other more minor cell types, the second cell band contained mainly polygonal and PAS-positive goblet epithelial cells, while the third band consisted of mainly erythrocytes. There were significant differences in the eicosanoid generating potential of the isolated cells, with cells from the second band generating significantly more 12-HETE and 8,15-DiHETE than those from both the first band and unfractionated populations. The eicosanoid generating activity of the trout gill epithelial cell line, RTG-W1, was also elucidated. It proved to be a modest generator of eicosanoids in that only low levels of thromboxane B2 and prostaglandin E2 were detected while no lipoxygenase products were observed.  相似文献   

11.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

12.
Biosynthesis of the prostaglandin endoperoxide by the cyclooxygenase (COX) enzymes is accompanied by formation of a small amount of 11R-hydroxyeicosatetraenoic acid (HETE), 15R-HETE, and 15S-HETE as by-products. Acetylation of COX-2 by aspirin abrogates prostaglandin synthesis and triggers formation of 15R-HETE as the sole product of oxygenation of arachidonic acid. Here, we investigated the formation of by-products of the transformation of 5S-HETE by native COX-2 and by aspirin-acetylated COX-2 using HPLC-ultraviolet, GC-MS, and LC-MS analysis. 5S,15S- dihydroxy (di)HETE, 5S,15R-diHETE, and 5S,11R-diHETE were identified as by-products of native COX-2, in addition to the previously described di-endoperoxide (5S,15S-dihydroxy-9S,11R,8S,12S-diperoxy-6E,13E-eicosadienoic acid) as the major oxygenation product. 5S,15R-diHETE was the only product formed by aspirin-acetylated COX-2. Both 5,15-diHETE and 5,11-diHETE were detected in CT26 mouse colon carcinoma cells as well as in lipopolysaccharide-activated RAW264.7 cells incubated with 5S-HETE, and their formation was attenuated in the presence of the COX-2 specific inhibitor, NS-398. Aspirin-treated CT26 cells gave 5,15-diHETE as the most prominent product formed from 5S-HETE. 5S,15S-diHETE has been described as a product of the cross-over of 5-lipoxygenase (5-LOX) and 15-LOX activities in elicited rat mononuclear cells and human leukocytes, and our studies implicate cross-over of the 5-LOX and COX-2 pathways as an additional biosynthetic route.  相似文献   

13.
Incubation of rocker-cultured neonatal rat heart cells with 3 mM L(+)-lactate led to a sharp increase in the sensitivity of cardiomyocytes to the beta-adrenergic agonist isoprenaline, as measured by their chronotropic response. This effect was accompanied by a reduction in the arachidonic acid content of the total phospholipids. The phospholipase A2-activator melittin as well as free arachidonic acid induced this supersensitivity to the same degree. On the other hand, the L(+)-lactate-evoked supersensitivity could be blocked by the phospholipase A2 inhibitors mepacrine and n-bromophenacyl-bromide, suggesting an involvement of phospholipase A2 in the process of beta-adrenergic sensitization. The sensitizing action of arachidonic acid was blocked by the lipoxygenase inhibitors esculetin and nordihydroguaiaretic acid, but not by the cyclooxygenase inhibitor indomethacin. Supersensitivity was likewise evoked by 15-S-hydroxyeicosatetraenoic acid (15-S-HETE), but not by 5-S-HPETE or 5-S-HETE. These findings suggest that the phospholipase A2-15-lipoxygenase pathway plays a role in the induction of beta-adrenergic supersensitivity in the cultured cardiomyocytes and point to a new physiological role of the lipoxygenase product 15-S-HETE.Abbreviations NDGA nordihydroguaiaretic acid - HETE hydroeicosatetraenoic acid - HPETE hydroperoxyeicosatetraenoic acid  相似文献   

14.
We have isolated a murine macrophage cDNA encoding a 12-lipoxygenase, that represents the homolog of the human 15-lipoxygenase. The predicted amino acid sequence of this lipoxygenase is highly similar to the rat 12-lipoxygenase isolated from brain and human 15-lipoxygenase. The recombinant enzyme expressed in Cos-7 cells oxidizes arachidonic acid to 12- and 15-HETE with a profile similar to that obtained from peritoneal macrophages. A polyclonal antibody generated against a putative peptide recognizes a 75 kDa protein in cell extracts from mouse peritoneal macrophages and transfected Cos-7 cells. The lipoxygenase cDNA hybridizes to a 2.5 kb mRNA present in peritoneal macrophages, lung, spleen, heart and liver. RT-PCR analysis indicates that the same lipoxygenase is expressed in mouse reticulocytes. A partial genomic clone for this lipoxygenase has also been characterized. Southern blot analysis of mouse genomic DNA indicates that this is a single copy gene.  相似文献   

15.
The synthesized 7-aryl derivatives of (7R,7′S,8S,8′S)-(+)-verrucosin were applied to growth inhibitory activity test against ryegrass at 1 mM. 7-(3-Ethoxy-4-hydroxyphenyl) derivative 12 and 7-(2-hydroxyphenyl) derivative 4 showed comparable activity to those of (+)-verrucosin against the root (−95%) and the shoot (−60%), respectively. The growth inhibitory activity test against lettuce using synthesized 7-aryl derivatives of (7S,7′R,8R,8′R)-(−)-verrucosin at 1 mM showed that the activities of 7-(3-hydroxyphenyl) derivative 20 and 7-(3-ethoxy-4-hydroxyphenyl) derivative 28 are similar to that of (−)-verrucosin against the root (−95%). Against the shoot, 7-(3-hydroxyphenyl) derivative 20 showed higher activity (−80%) than that of (−)-verrucosin (−60%). As the next step, (7S,7′R,8R,8′R)-7-(3-hydroxyphenyl)-7′-aryl-(−)-verrucosin derivatives, in which the most effective 3-hydroxyphenyl group is employed as 7-aromatic ring, were synthesized for the assay against lettuce. In this experiment, 7′-(2-hydroxyphenyl) derivative 37 and 7′-(3-hydroxyphenyl) derivative 38 showed similar activity to that of derivative 20. The effect of 7- and 7′-aryl structures of 7,7′-epoxylignanes on the plant growth inhibitory activity was clarified. The 7- and 7′-aryl structures were simplified to show comparable activity to or higher activity than that of (−)-verrucosin. The plant growth inhibitory activity of a nutmeg component, (+)-fragransin C3b, was estimated as −80% inhibition at 1 mM against ryegrass roots.  相似文献   

16.
15-hydroxyeicosatetraenoic acid (15-HETE) is an arachidonic acid derived lipid mediator which can originate both from 15-lipoxygenase (15-LOX) activity and cyclooxygenase (COX) activity. The enzymatic source determines the enantiomeric profile of the 15-HETE formed. 15-HETE is the most abundant arachidonic acid metabolite in the human lung and has been suggested to influence the pathophysiology of asthma. Mast cells are central effectors in asthma, but there are contradictory reports on whether 15-HETE originates from 15-LOX or COX in human mast cells. This prompted the current study where the pathway of 15-HETE biosynthesis was examined in three human mast cell models; the cell line LAD2, cord blood derived mast cells (CBMC) and tissue isolated human lung mast cells (HLMC). Levels and enantiomeric profiles of 15-HETE and levels of the downstream metabolite 15-KETE, were analyzed by UPLC-MS/MS after stimulation with anti-IgE or calcium ionophore A23187 in the presence and absence of inhibitors of COX isoenzymes. We found that 15-HETE was produced by COX-1 in human mast cells under these experimental conditions. Unexpectedly, chiral analysis showed that the 15(R) isomer was predominant and gradually accumulated, whereas the 15(S) isomer was metabolized by the 15-hydroxyprostaglandin dehydrogenase. We conclude that during physiological conditions, i.e., without addition of exogenous arachidonic acid, both enantiomers of 15-HETE are produced by COX-1 in human mast cells but that the 15(S) isomer is selectively depleted by undergoing further metabolism. The study highlights that 15-HETE cannot be used as an indicator of 15-LOX activity for cellular studies, unless chirality and sensitivity to pharmacologic inhibition is determined.  相似文献   

17.
Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation. Some of these factors are metabolites of arachidonic acid, most notably prostacyclin. However, many of the endothelial metabolites of arachidonic acid have not been positively identified. The purpose of these studies is to identify the arachidonic acid metabolites synthesized by bovine coronary endothelial cells. Cultured bovine coronary artery endothelial cells were incubated with [ 14C]arachidonic acid. The incubation media was extracted and the radioactive metabolites resolved by a combination of reverse phase- and normal phase-high pressure liquid chromatography (HPLC). The cells synthesized 6-keto prostaglandin (PG)F, PGE2, 12-hydroxyheptadecatrienoic acid (HHT), 12-, 15-, and 11- hydroxyeicosatetraenoic acids (HETE), and 14,15-, 11,12-, 8,9-, and 5,6-epoxyeicosatrienoic acids (EET). Several of the HETEs were further analyzed by chiral-phase HPLC. The cells synthesized predominately 12(S)-, 15(S)-, and 11(R)-HETE. The synthesis of the S optical isomers of 12- and 15-HETE suggested that the 12- and 15-lipoxygenases were present in these cells. 11(R)-HETE is probably derived from cyclooxygenase. They also synthesized smaller amounts of 9-, 8- and 5-HETEs. The structures of the HETEs and EETs were confirmed by mass spectrometry. The release of 6-keto PGF and 15-HETE was measured by specific radioimmunoassays. Melittin, thrombin, arachidonic acid and A23187 stimulated the release of both eicosanoids in a concentration-related matter. Under all conditions, the release of 6-keto PGF exceed the release of 15-HETE. Therefore, cultured bovine coronary artery endothelial cells synthesize cyclooxygenase, lipoxygenase and cytochrome P-450 metabolites of arachidonic acid.  相似文献   

18.
Disruption of tight junctions (TJs) perturbs endothelial barrier function and promotes inflammation. Previously, we have shown that 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), the major 15-lipoxygenase 1 (15-LO1) metabolite of arachidonic acid, by stimulating zona occludens (ZO)-2 tyrosine phosphorylation and its dissociation from claudins 1/5, induces endothelial TJ disruption and its barrier dysfunction. Here, we have studied the role of serine/threonine phosphorylation of TJ proteins in 15(S)-HETE-induced endothelial TJ disruption and its barrier dysfunction. We found that 15(S)-HETE enhances ZO-1 phosphorylation at Thr-770/772 residues via PKCϵ-mediated MEK1-ERK1/2 activation, causing ZO-1 dissociation from occludin, disrupting endothelial TJs and its barrier function, and promoting monocyte transmigration; these effects were reversed by T770A/T772A mutations. In the arteries of WT mice ex vivo, 15(S)-HETE also induced ZO-1 phosphorylation and endothelial TJ disruption in a PKCϵ and MEK1-ERK1/2-dependent manner. In line with these observations, in WT mice high fat diet feeding induced 12/15-lipoxygenase (12/15-LO) expression in the endothelium and caused disruption of its TJs and barrier function. However, in 12/15-LO−/− mice, high fat diet feeding did not cause disruption of endothelial TJs and barrier function. These observations suggest that the 12/15-LO-12/15(S)-HETE axis, in addition to tyrosine phosphorylation of ZO-2, also stimulates threonine phosphorylation of ZO-1 in the mediation of endothelial TJ disruption and its barrier dysfunction.  相似文献   

19.
A new cis isomer in the violaxanthin series has been isolated from the blossoms of Viola tricolor and identified by MS, IR and UV as the central-monocis form. It was converted to all-trans-violaxanthin by stereomutation. The CD correlation between 15-cis-violaxanthin and natural violaxanthin (5,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro- β,β-caroten-3,3′-diol) provided the basis for assignment of the absolute configurations 3S, 5R, 6S, 3′S, 5′R, 6′S. Trans—cis isomerization of all-trans-violaxanthin also resulted in 15- cis-violaxanthin. In addition a quantitative determination of the carotenoids was conducted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号