首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Stomatal conductance in improved Pima cotton cultivars (Gossypium barbadense) has been previously shown to be positively associated with heat resistance and yield potential. In the present study we determined the mode of inheritance of stomatal conductance in crosses of six G. barbadense parents varying in origin, degree of agronomic development and stomatal conductance. Parents included a primitive tropical cotton (B368), two obsolete cultivars (St Vincent V135, Pima 32), one modern commercial line (Pima S-6) and two elite genotypes of the Pima germplasm (P70, P73). These lines showed distinct differences in stomatal conductance, under greenhouse and field conditions. The primitive B368 had the lowest conductance, and the elite lines the highest. Generation means analysis was used to quantify genetic effects in the crosses P70 × St Vincent V135, Pima S-6 × B368, Pima S-6 × Pima 32, P73 × Pima 32 and P73 × Pima S-6. Best-fit models of the inheritance of stomatal conductance varied in complexity from a simple additive-dominance model in the cross P70 × St. Vincent V135 to models displaying digenic epistatic interactions in the remaining crosses. Significant additive mean effects for stomatal conductance were detected in all crosses. Dominance mean effects were significant in the crosses P73 × Pima 32 and P73 × Pima S-6. Broadsense heritability estimates of stomatal conductance were relatively low (0.16–0.44) in all crosses except Pima S-6 × B368 (0.74). Results also show that the mode of inheritance of stomatal conductance is multigenic, and may have maternal as well as nuclear components. Recouping higher stomatal conductance levels from genetically wider crosses appears feasible and could proceed at a moderate rate. Fixing higher levels of stomatal conductance in populations from crosses of elite germplasm may be more difficult because of the presence of dominant mean effects and digenic epistatic interactions.  相似文献   

2.
N2-fixing alfalfa plants were grown in controlled conditions at different CO2 levels (350 μmol mol?1 versus 700 μmol mol?1) and water-availability conditions (WW, watered at maximum pot water capacity versus WD, watered at 50% of control treatments) in order to determine the CO2 effect (and applied at two water regimes) on plant growth and nodule activity in alfalfa plants. The CO2 stimulatory effect (26% enhancement) on plant growth was limited to WW plants, whereas no CO2 effect was observed in WD plants. Exposure to elevated CO2 decreased Rubisco carboxylation capacity of plants, caused by a specific reduction in Rubisco (EC 4.1.1.39) concentration (11% in WW and 43% in WD) probably explained by an increase in the leaf carbohydrate levels. Plants grown at 700 μmol mol?1 CO2 maintained control photosynthetic rates (at growth conditions) by diminishing Rubisco content and by increasing nitrogen use efficiency. Interestingly, our data also suggest that reduction in shoot N demand (reflected by the TSP and especially Rubisco depletion) affected negatively nodule activity (malate dehydrogenase, EC 1.1.1.37, and glutamate-oxaloacetate transaminase, EC 2.6.1.1, activities) particularly in water-limited conditions. Furthermore, nodule DM and TSS data revealed that those nodules were not capable to overcome C sink strength limitations.  相似文献   

3.
The temperature optimum of photosynthesis coincides with the average daytime temperature in a species’ native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO2 assimilation rate (A) under atmospheric conditions was 30–32?°C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO2 concentration was consistent with Rubisco limiting A at ambient CO2. Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63?% reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35?°C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.  相似文献   

4.
Photosynthetic characteristics of ear and flag leaves of wheat species, tetraploid Triticum dicoccoides Kom and hexaploid Bima1, were studied in plants grown under well-watered (WW) and water-stressed (WS) conditions. Compared to ears, flag leaves exhibited higher photosynthetic rate (P N) at the filling stage, but more severe decrease under WS. P N in the tetraploid wheat ear remained higher than that in the hexaploid wheat during the grain-filling stage. Water stress decreased PN in both the organs; this decline was caused by a reduction in Rubisco activity, not by drought-induced stomatal limitation. Tetraploid wheat ears exhibited higher relative water content and water-use efficiency than that of hexaploid wheat, under WS. The change in phosphoenolpyruvate carboxylase activity and carbon isotope composition indicated the absence of C4 metabolism in the ears of both species under both conditions. The improved performance of the tetraploid wheat ears under WS was associated with better water relations.  相似文献   

5.
It has long been held that the low photosynthetic rates (A) of coffee leaves are largely associated with diffusive constraints to photosynthesis. However, the relative limitations of the stomata and mesophyll to the overall diffusional constraints to photosynthesis, as well as the coordination of leaf hydraulics with photosynthetic limitations, remain to be fully elucidated in coffee. Whether the low actual A under ambient CO2 concentrations is associated with the kinetic properties of Rubisco and high (photo)respiration rates also remains elusive. Here, we provide a holistic analysis to understand the causes associated with low A by measuring a variety of key anatomical/hydraulic and photosynthetic traits in sun- and shade-grown coffee plants. We demonstrate that leaf hydraulic architecture imposes a major constraint on the maximisation of the photosynthetic gas exchange of coffee leaves. Regardless of the light treatments, A was mainly limited by stomatal factors followed by similar limitations associated with the mesophyll and biochemical constraints. No evidence of an inefficient Rubisco was found; rather, we propose that coffee Rubisco is well tuned for operating at low chloroplastic CO2 concentrations. Finally, we contend that large diffusive resistance should lead to large CO2 drawdown from the intercellular airspaces to the sites of carboxylation, thus favouring the occurrence of relatively high photorespiration rates, which ultimately leads to further limitations to A.  相似文献   

6.
Tambussi EA  Nogués S  Araus JL 《Planta》2005,221(3):446-458
The photosynthetic characteristics of the ear and flag leaf of well-watered (WW) and water-stressed (WS) durum wheat (Triticum turgidum L. var. durum) were studied in plants grown under greenhouse and Mediterranean field conditions. Gas exchange measurements simultaneously with modulated chlorophyll fluorescence were used to study the response of the ear and flag leaf to CO2 and O2 during photosynthesis. C4 metabolism was identified by assessing the sensitivity of photosynthetic rate and electron transport to oxygen. The presence of CAM metabolism was assessed by measuring daily patterns of stomatal conductance and net CO2 assimilation. In addition, the histological distribution of Rubisco protein in the ear parts was studied by immunocytochemical localisation. Relative water content (RWC) and osmotic adjustment (osmotic potential at full turgor) were also measured in these organs. Oxygen sensitivity of the assimilation rate and electron transport, the lack of Rubisco compartmentalisation in the mesophyll tissues and the gas-exchange pattern at night indicated that neither C4 nor CAM metabolism occurs in the ear of WW or WS plants. Nevertheless, photosynthetic activity of the flag leaf was more affected by WS conditions than that of the ear, under both growing conditions. The lower sensitivity under water stress of the ear than of the flag leaf was linked to higher RWC and osmotic adjustment in the ear bracts and awns. We demonstrate that the better performance of the ear under water stress (compared to the flag leaf) is not related to C4 or CAM photosynthesis. Rather, drought tolerance of the ear is explained by its higher RWC in drought. Osmotic adjustment and xeromorphic traits of ear parts may be responsible.  相似文献   

7.
Under CO2-limited conditions such as during stomatal closure, photorespiration is suggested to act as a sink for excess light energy and protect photosystem I (PSI) by oxidizing its reaction center chlorophyll P700. In this study, this issue was directly examined with rice (Oryza sativa L.) plants via genetic manipulation of the amount of Rubisco, which can be a limiting factor for photorespiration. At low [CO2] of 5 Pa that mimicked stomatal closure condition, the activity of photorespiration in transgenic plants with decreased Rubisco content (RBCS-antisense plants) markedly decreased, whereas the activity in transgenic plants with overproduction of Rubisco (RBCS-sense plants) was similar to that in wild-type plants. Oxidation of P700 was enhanced at [CO2] of 5 Pa in wild-type and RBCS-sense plants. PSI was not damaged by excess light stress induced by repetitive saturated pulse-light (rSP) in the presence of strong steady-state light. On the other hand, P700 was strongly reduced in RBCS-antisense plants at [CO2] of 5 Pa. PSI was also damaged by rSP illumination. These results indicate that oxidation of P700 and the robustness of PSI against excess light stress are hampered by the decreased activity of photorespiration as a result of genetic manipulation of Rubisco content. It is also suggested that overproduction of Rubisco does not enhance photorespiration as well as CO2 assimilation probably due to partial deactivation of Rubisco.  相似文献   

8.
This study aimed to evaluate under photoautotrophic conditions the effect of CO2-enriched atmosphere (360 or 1,000 μmol CO2 mol?1 air) combined with two substrate types (agar or Florialite®) in vitro on plants of Pfaffia glomerata, an endangered medicinal species with promising applications in phytotherapy and phytomedicine. The effects of the treatments on the growth, stomatal density, Rubisco activity, carbon isotopic discrimination, metabolite accumulation, photosynthetic pigments and ultrastructural characteristics were investigated. After a 35-day cultivation period, the in vitro-growth of P. glomerata nodal segments under the different treatments resulted in plants with substantial differences in relation to their growth, photosynthetic pigments, stomatal density and leaf ultrastructural characteristics. The enrichment with CO2 coupled with a porous substrate increased the growth of P. glomerata. The stomatal density in the abaxial epidermis more than doubled in response to the high CO2 supply in both supporting types, whereas the Rubisco activity and activation state were both unresponsive to the treatments. Regardless of the CO2 supply, the plants grown in agar displayed higher carbon isotope discrimination than their counterparts grown in Florialite®. We propose that the long-term photosynthetic performance was improved using Florialite® as a growth support in combination with a high CO2 supply. No apparent signs of photosynthetic down-regulation could be found under elevated CO2 conditions. The enrichment of in vitro atmospheres with CO2 coupled with a porous substrate offers new possibilities for improving the growth and production on a commercial scale of high morphological and physiological quality Pfaffia plants.  相似文献   

9.
Yield of Pima cotton (Gossypium barbadense L.) has tripled over the last 40 years with the development of new cultivars. Six genetic lines representing successive stages in the breeding process (one primitive noncultivated accession, four cultivars with release dates from 1949 to 1983, and one unreleased breeding line) were grown in a greenhouse, and their gas exchange properties were compared. Among the cultivated types, genetic advances were closely associated with increasing single-leaf photosynthetic rate (A) and stomatal conductance (gs), especially in the morning. The A and gs of the primitive line approached those of the cultivated types early in the morning, but were much lower for the rest of the day. In both morning and afternoon, A was correlated with gs across genotypes but was not correlated with leaf thickness, concentrations of chlorophyll or starch, or intercellular CO2 concentration (ci). In the oldest cultivar, the relationship of A to ci did not change between morning and afternoon. In the two most recent lines, the slopes of the A:ci curves at limiting ci exceeded that of the oldest cultivar by 25 to 50% in the morning, but the differences were much smaller in the afternoon. The maximum A of the newer lines at high ci exceeded that of the oldest cultivar only in the morning. Breeding for increasing yield has enhanced the photosynthetic capacity and stomatal conductance of Pima cotton and altered the diurnal regulation of photosynthesis.  相似文献   

10.
Sensitivity to light quality and pigment composition were analysed and compared in abaxial and adaxial stomata of Gossypium barbadense L. (Pima cotton). In most plants, abaxial (lower) stomatal conductances are higher than adaxial (upper) ones, and stomatal opening is more sensitive to blue light than to red. In greenhouse-grown Pima cotton, abaxial stomatal conductances were two to three times higher than adaxial ones. In contrast, adaxial stomatal conductances were 1·5 to two times higher than abaxial ones in leaves from growth chamber-grown plants. To establish whether light quality was a factor in the regulation of the relationship between abaxial and adaxial stomatal conductances, growth-chamber-grown plants were exposed to solar radiation outdoors and to increased red light in the growth chamber. In both cases, the ratios of adaxial to abaxial stomatal conductance reverted to those typical of greenhouse plants. We investigated the hypothesis that adaxial stomata are more sensitive to blue light and abaxial stomata are more sensitive to red light. Measurements of stomatal apertures in mechanically isolated epidermal peels from growth chamber and greenhouse plants showed that adaxial stomata opened more under blue light than under red light, while abaxial stomata had the opposite response. Using HPLC, we quantified the chlorophylls and carotenoids extracted from isolated adaxial and abaxial guard cells. All pigments analysed were more abundant in the adaxial than in the abaxial guard cells. Antheraxanthin and β-carotene contents were 2·3 times higher in adaxial than in abaxial guard cells, comparing with ad/ab ratios of 1·5–1·9 for the other pigments. We conclude that adaxial and abaxial stomata from Pima cotton have a differential sensitivity to light quality and their distinct responses are correlated with different pigment content.  相似文献   

11.
Rubisco limits C3 photosynthesis under some conditions and is therefore a potential target for improving photosynthetic efficiency. The overproduction of Rubisco is often accompanied by a decline in Rubisco activation, and the protein ratio of Rubisco activase (RCA) to Rubisco (RCA/Rubisco) greatly decreases in Rubisco-overproducing plants (RBCS-ox). Here, we produced transgenic rice (Oryza sativa) plants co-overproducing both Rubisco and RCA (RBCS-RCA-ox). Rubisco content in RBCS-RCA-ox plants increased by 23%–44%, and RCA/Rubisco levels were similar or higher than those of wild-type plants. However, although the activation state of Rubisco in RBCS-RCA-ox plants was enhanced, the rates of CO2 assimilation at 25°C in RBCS-RCA-ox plants did not differ from that of wild-type plants. Alternatively, at a moderately high temperature (optimal range of 32°C–36°C), the rates of CO2 assimilation in RBCS-ox and RBCS-RCA-ox plants were higher than in wild-type plants under conditions equal to or lower than current atmospheric CO2 levels. The activation state of Rubisco in RBCS-RCA-ox remained higher than that of RBCS-ox plants, and activated Rubisco content in RCA overproducing, RBCS-ox, RBCS-RCA-ox, and wild-type plants was highly correlated with the initial slope of CO2 assimilation against intercellular CO2 pressures (A:Ci) at 36°C. Thus, a simultaneous increase in Rubisco and RCA contents leads to enhanced photosynthesis within the optimal temperature range.

A simultaneous increase in Rubisco and RCA contents in transgenic rice leads to an enhancement of photosynthesis at moderately high temperatures within the optimal temperature range.  相似文献   

12.
13.
Restrictions to photosynthesis can limit plant growth at high temperature in a variety of ways. In addition to increasing photorespiration, moderately high temperatures (35–42 °C) can cause direct injury to the photosynthetic apparatus. Both carbon metabolism and thylakoid reactions have been suggested as the primary site of injury at these temperatures. In the present study this issue was addressed by first characterizing leaf temperature dynamics in Pima cotton (Gossypium barbadense) grown under irrigation in the US desert south‐west. It was found that cotton leaves repeatedly reached temperatures above 40 °C and could fluctuate as much as 8 or 10 °C in a matter of seconds. Laboratory studies revealed a maximum photosynthetic rate at 30–33 °C that declined by 22% at 45 °C. The majority of the inhibition persisted upon return to 30 °C. The mechanism of this limitation was assessed by measuring the response of photosynthesis to CO2 in the laboratory. The first time a cotton leaf (grown at 30 °C) was exposed to 45 °C, photosynthetic electron transport was stimulated (at high CO2) because of an increased flux through the photorespiratory pathway. However, upon cooling back to 30 °C, photosynthetic electron transport was inhibited and fell substantially below the level measured before the heat treatment. In the field, the response of assimilation (A) to various internal levels of CO2 (Ci) revealed that photosynthesis was limited by ribulose‐1,5‐bisphosphate (RuBP) regeneration at normal levels of CO2 (presumably because of limitations in thylakoid reactions needed to support RuBP regeneration). There was no evidence of a ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) limitation at air levels of CO2 and at no point on any of 30 ACi curves measured on leaves at temperatures from 28 to 39 °C was RuBP regeneration capacity measured to be in substantial excess of the capacity of Rubisco to use RuBP. It is therefore concluded that photosynthesis in field‐grown Pima cotton leaves is functionally limited by photosynthetic electron transport and RuBP regeneration capacity, not Rubisco activity.  相似文献   

14.
A method of regenerating cotton plants from the shoot apical meristem of seedlings was developed for use with particle gun and Agrobacterium-mediated transformation. This method was developed to circumvent the problems of genotype restriction and chromosomal damage frequently encountered in cotton regeneration in tissue culture through somatic embryogenesis. In this procedure, the cells of the shoot meristem are targeted for transformation. Normal and fertile plants of Gossypium barbadense Pima S-6, and 19 cultivars of G. hirsutum were regenerated using this method. Shoot regeneration from these tissues was direct and relatively rapid. A MS based, hormone-free medium could be used with all the varieties tested.This project was funded by grants from Cotton Incorporated, Nisshinbo Industries, and a grant from the Texas Agricultural Experiment Station to RHS. Texas Agricultural Experiment Station Technical Article TA-25667.  相似文献   

15.
Water limitation is one of the major threats affecting grapevine production. Thus, improving water‐use efficiency (WUE) is crucial for a sustainable viticulture industry in Mediterranean regions. Under field conditions, water stress (WS) is often combined with viral infections as those are present in major grape‐growing areas worldwide. Grapevine leafroll‐associated virus 3 (GLRaV‐3) is one of the most important viruses affecting grapevines. Indeed, the optimization of water use in a real context of virus infection is an important topic that needs to be understood. In this work, we have focused our attention on determining the interaction of biotic and abiotic stresses on WUE and hydraulic conductance (Kh) parameters in two white grapevine cultivars (Malvasia de Banyalbufar and Giró Ros). Under well‐watered (WW) conditions, virus infection provokes a strong reduction (P < 0.001) in Kpetiole in both cultivars; however, Kleaf was only reduced in Malvasia de Banyalbufar. Moreover, the presence of virus also reduced whole‐plant hydraulic conductance (Khplant) in 2013 and 2014 for Malvasia de Banyalbufar and in 2014 for Giró Ros. Thus, the effect of virus infection on water flow might explain the imposed stomatal limitation. Under WS conditions, the virus effect on Kplant was negligible, because of the bigger effect of WS than virus infection. Whole‐plant WUE (WUEWP) was not affected by the presence of virus neither under WW nor under WS conditions, indicating that plants may adjust their physiology to counteract the virus infection by maintaining a tight stomatal control and by sustaining a balanced carbon change.  相似文献   

16.
17.
Increasing the leaf temperature of intact cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) plants caused a progressive decline in the light-saturated CO2-exchange rate (CER). CER was more sensitive to increased leaf temperature in wheat than in cotton, and both species demonstrated photosynthetic acclimation when leaf temperature was increased gradually. Inhibition of CER was not a consequence of stomatal closure, as indicated by a positive relationship between leaf temperature and transpiration. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is regulated by Rubisco activase, was closely correlated with temperature-induced changes in CER. Nonphotochemical chlorophyll fluorescence quenching increased with leaf temperature in a manner consistent with inhibited CER and Rubisco activation. Both nonphotochemical fluorescence quenching and Rubisco activation were more sensitive to heat stress than the maximum quantum yield of photochemistry of photosystem II. Heat stress led to decreased 3-phosphoglyceric acid content and increased ribulose-1,5-bisphosphate content, which is indicative of inhibited metabolite flow through Rubisco. We conclude that heat stress inhibited CER primarily by decreasing the activation state of Rubisco via inhibition of Rubisco activase. Although Rubisco activation was more closely correlated with CER than the maximum quantum yield of photochemistry of photosystem II, both processes could be acclimated to heat stress by gradually increasing the leaf temperature.  相似文献   

18.
Stomatal closure and metabolic impairment under drought stress limits photosynthesis. The objective of this study was to determine major stomatal and metabolic factors involved in photosynthetic responses to drought and recovery upon re‐watering in a C3 perennial grass species, Kentucky bluegrass (Poa pratensis L.). Two genotypes differing in drought resistance, ‘Midnight’ (tolerant) and ‘Brilliant’ (sensitive), were subjected to drought stress for 15 days and then re‐watered for 10 days in growth chambers. Single‐leaf net photosynthetic rate (A), stomatal conductance (gs) and transpiration rate (Tr) decreased during drought, with a less rapid decline in ‘Midnight’ than in ‘Brilliant’. Photochemical efficiency, Rubisco activity and activation state declined during drought, but were significantly higher in ‘Midnight’ than in ‘Brilliant’. The relationship between A and internal leaf CO2 concentration (A/Ci curve) during drought and re‐watering was analyzed to estimate the relative influence of stomatal and non‐stomatal components on photosynthesis. Stomatal limitation (Ls %), non‐stomatal limitation (Lns %), CO2 compensation point (CP) and dark respiration (Rd) increased with stress duration in both genotypes, but to a lesser extent in ‘Midnight’. Maximum CO2 assimilation rate (Amax), carboxylation efficiency (CE) and mesophyll conductance (gm) declined, but ‘Midnight’ had significantly higher levels of Amax, CE and gm than ‘Brilliant’. Maximum carboxylation rate of Rubisco (Vcmax) and ribulose‐1,5‐bisphospate (RuBP) regeneration capacity mediated by maximum electron transport rate (Jmax) decreased from moderate to severe drought stress in both genotypes, but to a greater extent in ‘Brilliant’ than in ‘Midnight’. After re‐watering, RWC restored to about 90% of the control levels in both genotypes, whereas A, gs, Tr and Fv/Fm was only partially recovered, with a higher recovery level in ‘Midnight’ than in ‘Brilliant’. Rubisco activity and activation state restored to the control level after re‐watering, with more rapid increase in ‘Midnight’ than in ‘Brilliant’. The values of Ls, Lns, CP and Rd declined, and Amax, CE, Vcmax, Jmax and gm increased after re‐watering, with more rapid change in all parameters in ‘Midnight’ than in ‘Brilliant’. These results indicated that the maintenance of higher A and Amax under drought stress in drought‐tolerant Kentucky bluegrass could be attributed to higher Rubico activation state, higher CE and less stomatal limitation. The ability to resume metabolic activity (Amax, CE, Fv/Fm and Rubisco) was observed in the drought‐tolerant genotype and is the most likely cause for the increased recuperative ability of photosynthesis. Incomplete recovery of photosynthesis upon re‐watering could be attributable to lasting stomatal limitations caused by severe drought damage in both genotypes. Promoting rapid stomatal recovery from drought stress may be critical for plants to resume full photosynthetic capacity in C3 perennial grass species.  相似文献   

19.
The impact of ambient solar UV was studied on the photosynthesis and yield of cotton (Gossypium hirsutum) var. Vikram in a field experiment by excluding either UV-B (<315 nm) or UV-B/A (<400 nm) components of solar spectrum. Cotton plants were grown in cages covered with polyester filters that could specifically cut off UV-B or UV-B/A part of the solar spectrum. The control plants were grown under a filter transmissible to UV. Exclusion of UV enhanced plant height, leaf area, total biomass, and the yield parameters (number and weight of bolls, length of fiber and number of seeds) of cotton. Enhancement in the vegetative growth and yield of the plants could be related to enhanced rate of photosynthesis in the leaves. Polyphasic chlorophyll a fluorescence (OJIP) transients from UV excluded plants gave a higher fluorescence yield at I–P phase. Fluorescence measurements indicated enhanced F v/F m ratio and reduction capacity after exclusion of solar UV. Exclusion also enhanced stomatal conductance and intercellular CO2 concentration and reduced the stomatal resistance. Total soluble proteins were higher after UV exclusion, and in SDS–PAGE analysis, bands corresponding to smaller subunits (14 kDa) of Rubisco were more intensely stained. Experiments indicated suppressive action of ambient UV on carbon fixation and yield of cotton plants. Exclusion of solar UV proved to be beneficial in enhancing the yield of cotton plants.  相似文献   

20.
Host plant resistance is an important strategy for managing root-knot nematode (Meloidogyne incognita) in cotton (Gossypium L.). Here we report evidence for enhanced resistance in interspecific crosses resulting from transgressive segregation of clustered gene loci. Recently, a major gene, rkn1, on chromosome 11 for resistance to M. incognita in cv. Acala NemX was identified using an intraspecific G. hirsutum cross with susceptible cv. Acala SJ-2. Using interspecific crosses of Acala NemX × susceptible G. barbadense cv. Pima S-7, F1, F2, F2:3, backcross, and testcross Acala NemX × F1 (Pima S-7 × SJ-2), parental entries and populations were inoculated in greenhouse tests with M. incognita. Genetic analyses based on nematode-induced root galling and nematode egg production on roots, and molecular marker analysis of the segregating interspecific populations revealed that gene rkn1 interacted with a gene (designated as RKN2) in susceptible Pima S-7 to produce a highly resistant phenotype. RKN2 did not confer resistance in Pima S-7, but when combined with rkn1 (genotype Aa or aa), high levels of resistance were produced in the F1 and segregating F2, F3, and BC1F1 populations. One SSR marker MUCS088 was identified tightly linked to RKN2 within 4.4 cM in a NemX × F1 (Pima S-7 × SJ-2) testcross population. Using mapped SSR markers and interspecific segregating populations, MUCS088 linked to the transgressive gene from the susceptible parent and was located in the vicinity of rkn1 on chromosome 11. Diverse genome analyses among A and D genome diploid and tetraploid cottons revealed that marker MUCS088 (165 and 167 bp) is derived from G. arboreum, A2 diploid genome. These results demonstrated that a highly susceptible parent contributed to nematode resistance via transgressive segregation. Derived highly resistant lines can be used as improved resistance sources in cotton breeding, and MUCS088 can be used to monitor RKN2 introgression in diverse populations. The close genomic location of the transgressive resistance determinants provides an important model system for studying transgressive segregation and epistasis in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号