共查询到20条相似文献,搜索用时 15 毫秒
1.
Welcker C Sadok W Dignat G Renault M Salvi S Charcosset A Tardieu F 《Plant physiology》2011,157(2):718-729
Evaporative demand and soil water deficit equally contribute to water stress and to its effect on plant growth. We have compared the genetic architectures of the sensitivities of maize (Zea mays) leaf elongation rate with evaporative demand and soil water deficit. The former was measured via the response to leaf-to-air vapor pressure deficit in well-watered plants, the latter via the response to soil water potential in the absence of evaporative demand. Genetic analyses of each sensitivity were performed over 21 independent experiments with (1) three mapping populations, with temperate or tropical materials, (2) one population resulting from the introgression of a tropical drought-tolerant line in a temperate line, and (3) two introgression libraries genetically independent from mapping populations. A very large genetic variability was observed for both sensitivities. Some lines maintained leaf elongation at very high evaporative demand or water deficit, while others stopped elongation in mild conditions. A complex architecture arose from analyses of mapping populations, with 19 major meta-quantitative trait loci involving strong effects and/or more than one mapping population. A total of 68% of those quantitative trait loci affected sensitivities to both evaporative demand and soil water deficit. In introgressed lines, 73% of the tested genomic regions affected both sensitivities. To our knowledge, this study is the first genetic demonstration that hydraulic processes, which drive the response to evaporative demand, also have a large contribution to the genetic variability of plant growth under water deficit in a large range of genetic material. 相似文献
2.
Chipilski RR Kocheva KV Nenova VR Georgiev GI 《Zeitschrift für Naturforschung. C, Journal of biosciences》2012,67(3-4):181-186
Young plants of the two wheat cultivars Katya and Prelom, differing in their reaction to drought in the field, were grown in soil in pots, and their water status was assessed as well as the intensity of gas exchange, chlorophyll fluorescence, and accumulation of compatible solutes and hydrogen peroxide after 7 days of dehydration. It was established that cv. Katya displayed markedly better tolerance to soil drying in comparison with cv. Prelom. This was partly due to the more effective control of water balance, activity of the photosynthetic apparatus, and metabolic activity of leaves under stress. Consequently, lower amounts of hydrogen peroxide were accumulated and a lower membrane injury index was determined. 相似文献
3.
Manvir Kaur Anil Kumar Gupta Vikramjit Kaur Zhawar 《Journal of plant biochemistry and biotechnology.》2014,23(1):18-30
Two wheat (Triticum aestivum) cultivars, C306 (drought tolerant) and PBW343 (drought susceptible) were compared for their response to exogenous ABA, water stress (WS) and combined (ABA plus WS) during their seedlings growth. Their responses were studied in the form of seedlings growth, antioxidant potential of roots and shoots and expression levels of LEA genes in shoots. ABA treatment led to increase in levels of ascorbate, ascorbate to dehydroascorbate ratio, antioxidant enzymes and decreases in levels of dehydroascorbate, malondialdehyde (MDA). Decrease in biomass, ascorbate contents, ascorbate to dehydroascorbate ratios and antioxidant enzymes was more in PBW343 than in C306 under WS. Dehydroascorbate and MDA levels were higher in PBW343 than in C306 under WS. ABA plus WS improved some of these features from their levels under WS in PBW343. Proline contents were not increased significantly under ABA in both cultivars. Out of ten LEA genes studied, six LEA genes were induced more under WS than under ABA in C306 but equally induced in PBW343. Four LEA genes were induced earlier in PBW343 but later in C306. Wdhn13 was induced more under ABA than under WS in C306 while it was non-responsive to both stresses in PBW343. 相似文献
4.
Elodie Claverie Félicien Meunier Mathieu Javaux Walid Sadok 《Physiologia plantarum》2018,162(3):290-300
Increasing evidence suggests that in crops, nocturnal water use could represent 30% of daytime water consumption, particularly in semi‐arid and arid areas. This raises the questions of whether nocturnal transpiration rates (TRN) are (1) less influenced by drought than daytime TR (TRD), (2) increased by higher nocturnal vapor pressure deficit (VPDN), which prevails in such environments and (3) involved in crop drought tolerance. In this investigation, we addressed those questions by subjecting two wheat genotypes differing in drought tolerance to progressive soil drying under two long‐term VPDN regimes imposed under naturally fluctuating conditions. A first goal was to characterize the response curves of whole‐plant TRN and TRN/TRD ratios to progressive soil drying. A second goal was to examine the effect of VPDN increase on TRN response to soil drying and on 13 other developmental traits. The study revealed that under drought, TRN was not responsive to progressive soil drying and – intriguingly – that TRN seemingly increased with drought under high VPDN consistently for the drought‐sensitive genotype. Because TRD was concomitantly decreasing with progressive drought, this resulted in TRN representing up to 70% of TRD at the end of the drydown. In addition, under drought, VPDN increase was found not to influence traits such as leaf area or stomata density. Overall, those findings indicate that TRN contribution to daily water use under drought might be much higher than previously thought, that it is controlled by specific mechanisms and that decreasing TRN under drought might be a valuable trait for improving drought tolerance. 相似文献
5.
In summer seasons of 1991 and 1992 the gas exchange and leaf water relations were analysed in two peanut cultivars: drought tolerant cv. GG 2 (DT) and drought sensitive cv. JL 24 (DS). Soil moisture stress was imposed by withholding irrigation at pod development phase. The decrease in photosynthesis (PN) under stress was associated with a decrease in stomatal conductance (gs) and relative water content (RWC). The PN and RWC were significantly higher under stress in DT than DS. On relief of stress the gs and RWC recovered more quickly in DT than DS. The maintenance of higher RWC (>80 %), gs and PN under stress appears to be imparting drought tolerance in peanut. 相似文献
6.
BORIS PARENT BENOÎT SUARD RACHID SERRAJ FRANÇOIS TARDIEU 《Plant, cell & environment》2010,33(8):1256-1267
Rice is known to be sensitive to soil water deficit and evaporative demand, with a greatest sensitivity of lowland‐adapted genotypes. We have analysed the responses of plant water relations and of leaf elongation rate (LER) to soil water status and evaporative demand in seven rice genotypes belonging to different species, subspecies, either upland‐ or lowland‐adapted. In the considered range of soil water potential (0 to ?0.6 MPa), stomatal conductance was controlled in such a way that the daytime leaf water potential was similar in well‐watered, droughted or flooded conditions (isohydric behaviour). A low sensitivity of LER to evaporative demand was observed in the same three conditions, with small differences between genotypes and lower sensitivity than in maize. The sensitivity of LER to soil water deficit was similar to that of maize. A tendency towards lower sensitivities was observed in upland than lowland genotypes but with smaller differences than expected. We conclude that leaf water status and leaf elongation of rice are not particularly sensitive to water deficit. The main origin of drought sensitivity in rice may be its poor root system, whose effect was alleviated in the study presented here by growing plants in pots whose soil was entirely colonized by roots of all genotypes. 相似文献
7.
Alessio Aprile Lenka Havlickova Riccardo Panna Caterina Marè Grazia M Borrelli Daniela Marone Carla Perrotta Patrizia Rampino Luigi De Bellis Vladislav Curn Anna M Mastrangelo Fulvia Rizza Luigi Cattivelli 《BMC genomics》2013,14(1)
Background
Durum wheat often faces water scarcity and high temperatures, two events that usually occur simultaneously in the fields. Here we report on the stress responsive strategy of two durum wheat cultivars, characterized by different water use efficiency, subjected to drought, heat and a combination of both stresses.Results
The cv Ofanto (lower water use efficiency) activated a large set of well-known drought-related genes after drought treatment, while Cappelli (higher water use efficiency) showed the constitutive expression of several genes induced by drought in Ofanto and a modulation of a limited number of genes in response to stress. At molecular level the two cvs differed for the activation of molecular messengers, genes involved in the regulation of chromatin condensation, nuclear speckles and stomatal closure. Noteworthy, the heat response in Cappelli involved also the up-regulation of genes belonging to fatty acid β-oxidation pathway, glyoxylate cycle and senescence, suggesting an early activation of senescence in this cv. A gene of unknown function having the greatest expression difference between the two cultivars was selected and used for expression QTL analysis, the corresponding QTL was mapped on chromosome 6B.Conclusion
Ofanto and Cappelli are characterized by two opposite stress-responsive strategies. In Ofanto the combination of drought and heat stress led to an increased number of modulated genes, exceeding the simple cumulative effects of the two single stresses, whereas in Cappelli the same treatment triggered a number of differentially expressed genes lower than those altered in response to heat stress alone. This work provides clear evidences that the genetic system based on Cappelli and Ofanto represents an ideal tool for the genetic dissection of the molecular response to drought and other abiotic stresses.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-14-821) contains supplementary material, which is available to authorized users. 相似文献8.
不同水分处理对耐旱性不同小麦品种旗叶衰老的影响 总被引:13,自引:1,他引:12
在防雨池栽条件下,研究了不同土壤水分处理对不同耐旱性小麦品种旗叶衰老的影响。结果表明,开花后小麦旗叶叶绿素含量、iPAs含量和光合速率均随土壤水分含量降低而降低,而MDA和ABA含量升高,旗叶衰老进程加快,产量降低。旱地品种菜农8834比水浇地品种鲁麦7号上述指标随土壤水分含量降低而下降或升高的幅度小,这是旱地小麦品种莱农8834在水分亏缺条件下产量较高的内在生理基础。 相似文献
9.
Classhouse and laboratory studies were conducted to investigate the effect of microorganisms on the activity of water-soluble phytotoxins from Brassica residues, and on the persistence of the phytotoxins. Warm temperatures (20–24°C) and long incubation periods (20 to 40 days) were conductive to reduced phytotoxicity while low temperatures (0–4°C, regardless of incubation time), or short incubation time (regardless of temperature) resulted in levels of phytotoxicity similar to that found without incubation. The removal of microbial populations by micro-filtration resulted in the maintenance of phytotoxicity, regardless of the incubation conditions. The quantity of residues or extracts from residues used in a pot experiment and the soil type (sand or clay soil) determined the degree of phytotoxicity. Generally, the greater the quantity of residues or extracts, the greater the toxicity, with residues being more toxic than extracts from the same rate of residue. These observations agree with the general literature that the level of toxicity is determined by the quantity of residue present, and the rate of decline in the toxicity of water-soluble toxins is dependent on the microbial populations present, and their level of activity. 相似文献
10.
Field and controlled environment studies were conducted to examine the effects of plant stress during growth on the subsequent phytotoxicity of residues ofBrassica napus andBrassica campestris. High temperatures (30°C compared to 15°C day temperature) and short days (8 hours light compared to 16 hours light) increased the phytotoxicity of residues as measured by a wheat bioassay. Low levels of nutrient supply during growth also increased the toxicity of Brassica residues. The effect of water stress was less clear; severe moisture stress resulted in less phytotoxicity than mild water stress. The two species showed some differences in wheat phytotoxicity following applied plant stress and the field experiments suggested there was a potential for greater toxicity from summer grown residues. 相似文献
11.
Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat 总被引:12,自引:0,他引:12
Vendruscolo EC Schuster I Pileggi M Scapim CA Molinari HB Marur CJ Vieira LG 《Journal of plant physiology》2007,164(10):1367-1376
Water deficit is one of the main abiotic factors that affect spring wheat planted in subtropical regions. Accumulation of proline appears to be a promising approach to maintain the productivity of plants under stress condition. However, morphological alterations and growth reduction are observed in transgenic plants carrying genes coding for osmoprotectants controlled by constitutive promoters. We report here the effects of water deficit on wheat plants transformed with the Vigna aconitifolia Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) cDNA that encodes the key regulatory enzyme in proline biosynthesis, under the control of a stress-induced promoter complex-AIPC. Transgenic wheat plants submitted to 15 days of water shortage presented a distinct response. We have found that drought resulted in the accumulation of proline. The tolerance to water deficit observed in transgenic plants was mainly due to protection mechanisms against oxidative stress and not caused by osmotic adjustment. 相似文献
12.
N. Belko M. Zaman‐Allah N.N. Diop N. Cisse G. Zombre J.D. Ehlers V. Vadez 《Plant biology (Stuttgart, Germany)》2013,15(2):304-316
Drought stress is a major constraint on cowpea productivity, since the crop is grown under warm conditions on sandy soils having low water‐holding capacity. For enhanced performance of crops facing terminal drought stress, like cowpea, water‐saving strategies are crucial. In this work, the growth and transpiration rate (TR) of 40 cowpea genotypes with contrasting response to terminal drought were measured under well‐watered conditions across different vapour pressure deficits (VPD) to investigate whether tolerant and sensitive genotypes differ in their control of leaf water loss. A method is presented to indirectly assess TR through canopy temperature (CT) and the index of canopy conductance (Ig). Overall, plants developed larger leaf area under low than under high VPD, and there was a consistent trend of lower plant biomass in tolerant genotypes. Substantial differences were recorded among genotypes in TR response to VPD, with tolerant genotypes having significantly lower TR than sensitive ones, especially at times with the highest VPD. Genotypes differed in TR response to increasing VPD, with some tolerant genotypes exhibiting a clear VPD breakpoint at about 2.25 kPa, above which there was very little increase in TR. In contrast, sensitive genotypes presented a linear increase in TR as VPD increased, and the same pattern was found in some tolerant lines, but with a smaller slope. CT, estimated with thermal imagery, correlated well with TR and Ig and could therefore be used as proxy for TR. These results indicate that control of water loss discriminated between tolerant and sensitive genotypes and may, therefore, be a reliable indicator of terminal drought stress tolerance. The water‐saving characteristics of some genotypes are hypothesised to leave more soil water for pod filling, which is crucial for terminal drought adaptation. 相似文献
13.
Limits to water transport in Juniperus osteosperma and Pinus edulis: implications for drought tolerance and regulation of transpiration 总被引:9,自引:0,他引:9
1. An air-injection method was used to study loss of water transport capacity caused by xylem cavitation in roots and branches of Pinus edulis (Colorado Pinyon) and Juniperus osteosperma (Utah Juniper). These two species characterize the Pinyon–Juniper communities of the high deserts of the western United States. Juniperus osteosperma can grow in drier sites than P. edulis and is considered the more drought tolerant.
2. Juniperus osteosperma was more resistant to xylem cavitation than P. edulis in both branches and roots. Within a species, branches were more resistant to cavitation than roots for P. edulis but no difference was seen between the two organs for J. osteosperma . There was also no difference between juveniles and adults in J. osteosperma ; this comparison was not made for P. edulis .
3. Tracheid diameter was positively correlated with xylem cavitation pressure across roots and stems of both species. This relation suggests a trade-off between xylem conductance and resistance to xylem cavitation in these species.
4. During summer drought, P. edulis maintained higher predawn xylem pressures and showed much greater stomatal restriction of transpiration, consistent with its greater vulnerability to cavitation, than J. osteosperma .
5. These results suggest that the relative drought tolerance of P. edulis and J. osteosperma results in part from difference in their vulnerability to xylem cavitation. 相似文献
2. Juniperus osteosperma was more resistant to xylem cavitation than P. edulis in both branches and roots. Within a species, branches were more resistant to cavitation than roots for P. edulis but no difference was seen between the two organs for J. osteosperma . There was also no difference between juveniles and adults in J. osteosperma ; this comparison was not made for P. edulis .
3. Tracheid diameter was positively correlated with xylem cavitation pressure across roots and stems of both species. This relation suggests a trade-off between xylem conductance and resistance to xylem cavitation in these species.
4. During summer drought, P. edulis maintained higher predawn xylem pressures and showed much greater stomatal restriction of transpiration, consistent with its greater vulnerability to cavitation, than J. osteosperma .
5. These results suggest that the relative drought tolerance of P. edulis and J. osteosperma results in part from difference in their vulnerability to xylem cavitation. 相似文献
14.
水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响 总被引:53,自引:9,他引:53
在人工气候室水培条件下,选用3个不同抗旱类型的冬小麦品种,研究了水分胁迫对冬小麦幼苗叶绿素荧光参数的影响。结果表明:水分胁迫下,冬小麦幼苗可变荧光(Fv)、最大荧光(Fm)、可变荧光与最大荧光比(Fv/Fm)、可变荧光与初始荧光比(Fv/Fo)、光化学淬灭系数(qF)均降低;而初始荧光(Fo)与非光化学淬灭系数(qNP)则升高,说明光系统Ⅱ(PSⅡ)受到了伤害,使得PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)降低;光合电子传递、光合原初反应过程受到抑制,起光保护作用的热耗散提高。但水分胁迫下品种间各参数变化幅度不同。除qNF外,其余各参数均为抗旱性越强降低幅度越小,而qNF则升高幅度越大。说明水分胁迫对冬小麦幼苗叶绿素荧光参数的影响与其抗旱性密切相关。 相似文献
15.
Svetlana V. Osipova Aleksey V. Permyakov Marina D. Permyakova Tatyana A. Pshenichnikova Mikhail A. Genaev Andreas Börner 《Acta Physiologiae Plantarum》2013,35(8):2455-2465
Understanding of the genetic basis of physiological properties, which are most relevant to water-deficit tolerance would be helpful for genomic-assisted improvement of bread wheat. A set of bread wheat inter-varietal single chromosome substitution lines (ISCSLs) of variety ‘Janetzkis Probat’ (JP) in the genetic background of ‘Saratovskaya’ 29 (S29) were used to reveal the critical chromosomes in wheat genome controlling tolerance to water deficit. The same lines were involved in the identification of chromosomes associated with the activity of antioxidant enzymes that are closely related to the detoxification of H2O2 [catalase (CAT), ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase (GR)]. The recipient cultivar S29 was highly drought tolerant while the donor JP was sensitive. Using non-metric multidimensional scaling of yield components and indices of drought tolerance/susceptibility chromosomes 2A and 4D, substitution in the genetic background of S29 was found to lead to a critical decrease of water-deficit tolerance. The drop of tolerance correlated with a sharp decline of cumulative activity of the catalase and the enzymes of ascorbate–glutathione cycle in wheat leaves. Clear evidence was obtained for the involvement of genes present on the homoeologous group 2 chromosomes in the control of GR and CAT activity. Substitution of the chromosome 4D had a significant reducing impact on the CAT activity level. 相似文献
16.
The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. 相似文献
17.
Respiratory energy demand for protein turnover and ion transport in wheat leaves upon water deficit 总被引:3,自引:0,他引:3
Barbara Zagdaska 《Physiologia plantarum》1995,95(3):428-436
The effect of water stress on the respiratory energy demand for the main biosynthetic and transport processes was estimated in the leaves of spring wheat ( Triticum aestivum L. cv. San Pastore) acclimated and non-acclimated to drought. ATP-consuming processes were assessed from the effects of selective inhibitors of RNA synthesis, protein synthesis and proteolysis, Ca2+ -ATPase and P-type ATPases on respiration. The proportions of energy consumed by these processes were compared with the theoretical ATP production calculated from the rate of oxygen consumption measured manometrically. Respiratory energy production increased significantly in both acclimated leaves and in leaves stressed by drought. In the fully grown wheat leaves, Ca2+ -dependent reactions and protein turnover consumed about 37% and 34% of the total respiratory energy, respectively. The costs of ion transport constituted another 15% of the total ATP production. Both acclimation and drought stress in non-acclimated leaves resulted in a decrease of leaf sensitivity towards inhibitors of RNA and protein syntheses as well as a decrease in Ca2+ -mediated processes; but also in an increase of leaf sensitivity towards inhibitors of proteolysis and ouabain-sensitive ATPase in non-acclimated plants. This indicates a shift in ATP input into the energy-requiring processes towards greater expenses for ion transport upon water deficit. However, in acclimated leaves under drought stress, distribution of respiratory energy became almost the same as in control plants. 相似文献
18.
Khady Nani Dramé Danièle Clavel Anne Repellin Chantal Passaquet Yasmine Zuily-Fodil 《Plant Physiology and Biochemistry》2007,45(3-4):236-243
Peanut (Arachis hypogaea L.) is an important subsistence and cash crop in the semi-arid tropics where it often suffers from drought stress. Although its ecophysiological responses are studied, little is known about the molecular events involved in its adaptive responses to drought. The aim of this study was to investigate the involvement of membrane phospholipid and protein degrading enzymes as well as protective proteins such as "late embryogenesis-abundant" (LEA) protein in peanut adaptive responses to drought. Partial cDNAs encoding putative phospholipase D alpha, cysteine protease, serine protease and a full-length cDNA encoding a LEA protein were cloned. Their expression in response to progressive water deficit and rehydration was compared between cultivars differing in their tolerance to drought. Differential gene expression pattern according to either water deficit intensity and cultivar's tolerance to drought were observed. A good correspondence between the molecular responses of the studied cultivars and their physiological responses previously defined in greenhouse and field experiments was found. Molecular characters, as they were detectable at an early stage, could therefore be efficiently integrated in groundnut breeding programmes for drought adaptation. Thus, the relevance of the target genes as drought tolerance indicators is discussed. 相似文献
19.
Montalvo-Hernández L Piedra-Ibarra E Gómez-Silva L Lira-Carmona R Acosta-Gallegos JA Vazquez-Medrano J Xoconostle-Cázares B Ruíz-Medrano R 《The New phytologist》2008,177(1):102-113
The physiological response to drought was measured in two common bean varieties with contrastive susceptibility to drought stress. A subtractive cDNA library was constructed from the two cultivars, Phaseolus vulgaris'Pinto Villa' (tolerant) and 'Carioca' (susceptible). 18 cDNAs displayed protein-coding genes associated with drought, cold and oxidative stress, signal transduction, plant defense, chloroplast function and unknown function. A cDNA coding for an aquaporin (AQP) was selected for further analyses. The open reading frames (ORFs) of AQPs from 'Pinto Villa' and 'Carioca' were compared and despite their similarity, accumulated differentially in the plant organs, as demonstrated by Northern blot and in situ hybridization. A phylogenetic analysis of the deduced amino acid sequence with other AQPs suggested a tonoplast-located protein. Under drought conditions, the levels of AQP mRNA from the susceptible cultivar decreased to undetectable levels; by contrast, 'Pinto Villa' mRNA was present and restricted the phloem tissue. This would allow 'Pinto Villa' to maintain vascular tissue functions under drought stress. 相似文献
20.
gnes Gall Joln Csiszr Maria Secenji Adrienn Guth Lszl Cseuz Irma Tari Jnos Gyrgyey Lszl Erdei 《Journal of plant physiology》2009,166(17):1878-1891