首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Technologies for in vitro embryo production have the potential to enhance the efficiency of cattle production systems. However, utilization of in vitro-produced embryos for transfer remains limited throughout much of the world. Despite improvements over the past two decades, problems associated with the production of bovine embryos in vitro still exist which limit the widespread commercial application of this technology. In particular, bovine embryos produced in vitro have a reduced capacity to establish and maintain pregnancy as compared with their in vivo-derived counterparts. Embryo competence for survival following transfer is improved by in vivo culture in the sheep oviduct, thus indicating that standard embryo culture conditions are sub-optimal. Therefore, one strategy to improve post-transfer survival is to modify embryo culture media to more closely mimic the in vivo microenvironment. The maternal environment in which the bovine embryo develops in vivo contains various growth factors, cytokines, hormones, and other regulatory molecules. In addition to affecting bovine embryo development in vitro, recent research indicates that embryo competence for survival following transfer can also be improved when such molecules are added to embryo culture medium. Among the specific molecules that can increase post-transfer embryo survival are insulin-like growth factor-1 (IGF-1), colony stimulating factor-2 (CSF-2) and hyaluronan. This paper will review the effects IGF-1, CSF-2 and hyaluronan on post-culture embryo viability and discuss the potential mechanisms through which each of these molecules improves post-transfer survival.  相似文献   

2.
3.
Block J  Hansen PJ 《Theriogenology》2007,67(9):1518-1529
Culture of bovine embryos in the presence of insulin-like growth factor-1 (IGF-1) can increase pregnancy rates following transfer to heat-stressed, lactating dairy cows. The objective of the present experiment was to determine whether the effect of IGF-1 on post-transfer embryo survival was a general effect or one specific to heat stress. Lactating recipients (n=311) were synchronized for timed-embryo transfer at four locations. Embryos were produced in vitro and cultured with or without 100 ng/mL IGF-1. At Day 7 after anticipated ovulation (Day 0), a single embryo was randomly transferred to each recipient. Pregnancy was diagnosed at Day 21 by elevated plasma progesterone concentrations, at Days 27-32 by ultrasonography, and at Days 41-49 by transrectal palpation. Transfers were categorized into two seasons, hot or cool (based on the month of transfer). There was a tendency (P<0.09) for an interaction between embryo treatment and season for pregnancy rate at Day 21; this interaction was significant at Days 30 and 45 (P<0.02). Recipients receiving IGF-1 treated embryos had higher pregnancy rates in the hot season but not in the cool season. There was a similar interaction between embryo treatment and season for overall calving rate (P<0.05). There was also an interaction between season and treatment affecting pregnancy loss between Days 21 and 30; recipients that received IGF-1 treated embryos had less pregnancy loss during this time period in the hot season but not in the cool season. The overall proportion of male calves born was 77.5%. In conclusion, treatment of embryos with IGF-1 improved pregnancy and calving rates following the transfer of in vitro produced embryos into lactating recipients, but only under heat-stress conditions.  相似文献   

4.
Two experiments were conducted to determine whether addition of hyaluronan to culture medium could improve survival of bovine embryos after vitrification or following embryo transfer. In Experiment 1, embryos were produced in vitro and cultured for 7 days in modified synthetic oviductal fluid (SOF) containing one of four concentrations of hyaluronan (0, 0.1, 0.5, or 1 mg/mL), with or without 4 mg/mL of bovine serum albumin (BSA). On Day 7 after insemination, blastocysts and expanded blastocysts were vitrified using open-pulled straws. At a concentration of 1 mg/mL, hyaluronan increased (P < 0.05) the percentage of oocytes that were blastocysts and re-expansion rate at 24 h after warming. At 0.5 mg/mL, hyaluronan tended (P < 0.10) to increase re-expansion rate at 48 h after warming and increased (P < 0.05) embryo hatching rate at 24 and 72 h. Treatment with BSA caused a slight reduction in cleavage rate (P < 0.05), but only for cultures containing hyaluronan (BSA × hyaluronan, P = 0.10), an increase in the percentage of oocytes that became blastocysts (P < 0.001), and a reduction in re-expansion rates (P < 0.001) and hatching rates (P < 0.05 or P < 0.01) at all times examined. In Experiment 2, embryos were produced in vitro and cultured in modified SOF containing 4 mg/mL BSA, with or without 1 mg/mL hyaluronan. At 159-162 h after insemination, grade 1 morula, blastocysts and expanded blastocysts were harvested for embryo transfer. Harvested embryos were transferred individually to lactating Holstein recipients with a palpable corpus luteum on Day 7 after presumptive ovulation. There was an interaction (P < 0.05) between hyaluronan and embryo stage on pregnancy rate. Recipients that received morula and blastocyst stage embryos treated with hyaluronan had a higher pregnancy rate than recipients that received control embryos of the same stage. There was no effect of hyaluronan on pregnancy rates of recipients that received expanded blastocysts. In conclusion, addition of hyaluronan to embryo culture enhanced blastocyst yield, improved survival following vitrification, and enhanced the post-transfer survival of fresh morula and blastocyst stage embryos.  相似文献   

5.
6.
Although bovine embryos are routinely produced in vitro for several decades, there still exists a critical need for techniques to accurately predict the oocyte's developmental competence in a noninvasive way, before the in vitro embryo production procedure. In this review, several noninvasive methods to evaluate oocyte quality are discussed, such as morphological assessment of the cumulus oocyte complex and the use of brilliant cresyl blue. Because an individual oocyte and embryo culture method can possibly generate additional insights into the factors that determine oocyte quality, the second part of this review summarizes the state of the art of bovine single oocyte culture. The optimization of individual in vitro embryo production can obviously accelerate the quest for better noninvasive oocyte quality markers, because more information about the oocyte's requirements and intrinsic quality will be revealed. Although each step of in vitro culture has to be re-examined in light of the hampered production of single embryos, the reward at the end will be substantial. Individual scored oocytes will be traceable along the in vitro embryo production procedure and the final blastocyst outcome can be linked to the original oocyte quality and follicular environment without the bias caused by simultaneously developing embryos.  相似文献   

7.
Culture of bovine embryos with insulin-like growth factor-1 (IGF-1) can improve development to the blastocyst stage and embryo survival following transfer to heat-stressed, lactating dairy cows. Two experiments were conducted to determine whether IGF-1 could improve embryo survival and development at Day 14 after ovulation. In Experiment 1, non-lactating Holstein cows (n=58) were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced in vitro and cultured with or without 100ng/mL IGF-1. At Day 7 after expected ovulation (Day 0), groups of 7-12 embryos were randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and the presence or absence of an embryonic disc was recorded. Recovered embryos were cultured individually for 24h to determine interferon-tau (IFN-tau) secretion. There was no effect of IGF-1 on embryo recovery rate, embryo length or IFN-tau secretion. In Experiment 2, non-lactating (n=56) and lactating (n=35) Holstein cows were selected as recipients following synchronization for timed-embryo transfer. Embryos were produced as described in Experiment 1. At Day 7 after expected ovulation (Day 0), a single embryo was randomly transferred to each recipient. Embryos were recovered at Day 14. Embryo length and IFN-tau secretion were determined as in Experiment 1. Recovery rate at Day 14 tended (P=0.1) to be higher for recipients that received IGF-1 treated embryos compared to control embryos (43.2% versus 26.1%, respectively). There was no effect of IGF-1 on embryo length or IFN-tau secretion. In conclusion, results suggest that exposure to IGF-1 through Days 7-8 of development does not enhance capacity of embryos to prevent luteolysis. Results of the single embryo-transfer experiment suggested that IGF-1 treatment might affect embryo survival post-transfer as early as Day 14 after ovulation. Further experimentation is warranted to verify this finding.  相似文献   

8.
9.
The objective was to use the bovine viral diarrhea virus (BVDV) as a model to assess the risk of infectious disease transmission in the system of in vitro embryo production and transfer via somatic cell nuclear transfer (SCNT) technology. The risks of BVDV transmission in the SCNT embryo production were previously evaluated [1]. In that in vitro study, following standard operating procedures (SOP), including pre-nuclear transfer donor cell testing, oocyte decontamination and virus-free cell and embryo culture conditions, SCNT embryos produced were free of detectable viral RNA. The current study focused on the evaluation of the potential risk of disease transmission from SCNT embryos to recipients, and the risk of producing persistently infected animals via SCNT embryo transfer. Blood samples were collected from 553 recipients of SCNT embryos and 438 cloned calves and tested for the presence of BVDV viral RNA via a sensitive real time PCR method. All samples tested were negative. These results, in conjunction with the previous in vitro study, confirmed that the established SCNT embryo production and transfer system is safe and presents no detectable risk of disease transmission.  相似文献   

10.
11.
12.
The objective was to evaluate pregnancy outcomes and birth rate of in vivo derived vs. in vitro produced ovine embryos submitted to different cryopreservation methods. A total of 197 in vivo and 240 in vitro produced embryos were cryopreserved either by conventional freezing, or by vitrification with Cryotop or Spatula MVD methods on Day 6 after insemination/fertilization. After thawing/warming and transfer, embryo survival rate on Day 30 of gestation was affected by the source of the embryos (in vivo 53.3%, in vitro 20.8%; P < 0.05) and by the method of cryopreservation (conventional freezing 26.5%, Cryotop 52.0%, Spatula MVD 22.2%; P < 0.05). For in vivo derived embryos, survival rate after embryo transfer was 45.6% for conventional freezing, 67.1% for Cryotop, and 40.4% for Spatula MVD. For in vitro produced embryos, survival rate was 7.3% for conventional freezing, 38.7% for Cryotop, and 11.4% for Spatula MVD. Fetal loss from Day 30 to birth showed a tendency to be greater for in vitro (15.0%) rather than for in vivo produced embryos (5.7%), and was not affected by the cryopreservation method. Gestation length, weight at birth and lamb survival rate after birth were not affected by the source of the embryo, the cryopreservation method or stage of development (average: 150.5 ± 1.8 days; 4232.8 ± 102.8 g; 85.4%; respectively). This study demonstrates that embryo survival and birth rate of both in vivo and in vitro produced ovine embryos are improved by vitrification with the minimum volume Cryotop method.  相似文献   

13.
The objective of this study was to perform a comprehensive risk assessment on infectious disease transmission in the system of in vitro embryo production via somatic cell nucleus transfer (SCNT) technology using bovine viral diarrhea virus (BVDV) as a model. The risks of BVDV transmission in each step of the SCNT embryo production procedure, from donor cells to preimplantation SCNT embryo culture, were carefully examined using a sensitive real-time polymerase chain reaction assay. The identified primary source of BVDV transmission in SCNT embryo production was donor cell infection, most likely caused by contaminated fetal bovine serum in the culture medium. The risk of disease transmission through contaminated oocytes from an abattoir was relatively low, and it can be greatly minimized by cumulus cell removal and adequate oocyte washing procedures. Of the 200 cumulus-oocyte complexes (COCs) and more than 1500 cumulus cell-free oocyte (CFO) samples collected from multiple sources over a course of 7 months, only 2.5% of the COCs were BVDV positive, and all of the CFOs (100%) were BVDV negative. To evaluate the risk of BVDV introduction during in vitro SCNT embryo culture, 324 SCNT embryos were produced from 18 different cell lines using oocytes from 26 different batches collected over a course of 9 months. The embryos were cultured in vitro for 7 days and then tested for BVDV. All of the 324 SCNT embryos (100%) were negative, indicating that the embryo culture system is virtually risk-free for BVDV transmission. Based on these results, a standard operational protocol (SOP) for SCNT embryo production was proposed to greatly minimize the risk of BVDV transmission through the SCNT embryo production system. This SOP could be a starting point to produce a SCNT system that is virtually risk-free for disease transmission in general.  相似文献   

14.
Studies addressing the effects of supraphysiological levels of IGF-1 on oocyte developmental competence are relevant for unravelling conditions resulting in high bioavailability of IGF-1, such as the polycystic ovary syndrome (PCOS). This study investigated the effects of supraphysiological levels of IGF-1 during in vivo folliculogenesis on the morula-blastocyst transition in bovine embryos. Compacted morulae were non-surgically collected and frozen for subsequent mRNA expression analysis (IGF1R, IGBP3, TP53, AKT1, SLC2A1, SLC2A3, and SLC2A8), or underwent confocal microscopy analysis for protein localization (IGF1R and TP53), or were cultured in vitro for 24 h. In vitro-formed blastocysts were subjected to differential cell staining. The mRNA expression of SLC2A8 was higher in morulae collected from cows treated with IGF-1. Both IGF1R and TP53 protein were present in the plasma membrane and cytoplasm. IGF-1 treatment did not affect protein localization of both IGF1R and TP53. In vitro-formed blastocysts derived from morulae recovered from IGF-1-treated cows displayed a higher number of cells in the inner cell mass (ICM). Total cell number (TCN) of in vitro-formed blastocysts was not affected. A higher mean ICM/TCN proportion was observed in in vitro-formed blastocysts derived from morulae collected from cows treated with IGF-1. The percentage of in vitro-formed blastocysts displaying a low ICM/TCN proportion was decreased by IGF-1 treatment. In vitro-formed blastocysts with a high ICM/TCN proportion were only detected in IGF-1 treated cows. Results show that even a short in vivo exposure of oocytes to a supraphysiological IGF-1 microenvironment can increase ICM cell proliferation in vitro during the morula to blastocyst transition.  相似文献   

15.
16.
Ovarian transvaginal ultrasonography (OTU) has been used world-wide for commercial ovum pick-up programs for in vitro embryo production in elite herds, providing an excellent model for the elucidation of factors controlling bovine oocyte developmental competence. Noninvasive sampling and treatment of ovarian structures is easily accomplished with bovine OTU techniques providing a promising system for in vivo delivery of transgenes directly into the ovary. The current review summarizes existing bovine OTU models and provides prospective applications of bovine OTU to undertake research in reproductive topics of biomedical relevance, with special emphasis on the development of in vivo gene transfer strategies.  相似文献   

17.
Uterine stage embryos collected from the hamster (8-cell) and cow (morula, early blastocyst) were monitored for development invitro (embryo culture) and invivo (embryo transfer) following premature removal of the zona pellucida.Removal of the zona pellucida did not significantly affect invitro development to the blastocyst stage of (1) 8-cell hamster embryos (zonae removed by a combined enzymic-mechanical procedure), (2) bovine morulae (zonae removed by mechanical means only) (3) early bovine blastocysts (zonae removed by the enzymic-mechanical technique).Zona-free hamster embryos formed significantly fewer viable fetuses than did zona-intact embryos. The lower incidence of fetal development observed following transfer of zona-free 8-cell hamster embryos may have resulted in part from the formation of chimeras by fusion of these embryos inutero. Such fusion was observed to occur invitro between zona-free embryos placed in close proximity. The proportion of pregnancies resulting from transfer of bovine blastocysts cultured from zona-free morulae was similar to that of zona-intact embryos.In this study we have demonstrated that (1) enzymic and mechanical procedures used to remove zonae pellucidae from uterine-stage hamster and bovine embryos do not adversely affect subsequent development of these embryos invitro and invivo and (2) zonae pellucidae are not required for normal development of these embryos. These findings have implications for microsurgery of mammalian embryos and for embryo transfer.  相似文献   

18.
The objective of this study was to determine the effects of in vitro embryo production on physical development and levels of expression of mRNAs for insulin-like growth factor (IGF) ligands (IGF1, IGF2), their receptors (IGF1R, IGF2R), and IGF binding protein-2 (IGFBP2) in bovine fetuses during early gestation. In vivo embryos were recovered from superovulated Holstein cows. For production of embryos in vitro, Holstein oocytes were matured, fertilized, and subsequently cultured in M199 with 10% serum to 168 hpi. On Day 70 of gestation, fetuses (in vivo, n = 14; in vitro, n = 13) were recovered, serum samples collected, and physical measurements recorded. Semi-quantitative RT-PCR assays were used to determine the levels of expression of mRNAs for IGF1, IGF2, IGF1R, and IGF2R in fetal liver and skeletal muscle. Western blots were used to assess levels of IGFBP2 in fetal serum. Fetal body weight did not differ with treatment; however, production of embryos in vitro was associated with decreased crown-nose length and a tendency for increased paired kidney weight, which became significant when expressed on a per bodyweight basis. There was no effect of treatment on levels of IGFBP2 in fetal serum. Levels of IGF1 mRNA in fetal liver were decreased (P < 0.001) in the in vitro group. Levels of IGF2R mRNA in both liver and skeletal muscle were also decreased (P < 0.01) in fetuses from the in vitro group. In summary, fetuses at Day 70 of gestation from embryos produced in vitro had shortened crown-nose length and increased kidney weight on a per bodyweight basis, as well as decreased expression of mRNAs for IGF1 in liver and IGF2R in both liver and skeletal muscle, compared with fetuses from embryos produced in vivo. In conclusion, in vitro embryo culture was associated with subtle changes in fetal development as well as altered expression of both imprinted and non-imprinted genes.  相似文献   

19.
A brief overview of the progress made during the past approximately 40 years on the development of methods for in vitro production of cat embryos and intra- and interspecies embryo transfer is described. The presentation is focused primarily on research done over the past 30 years at the Cincinnati Zoo (1980–1995) and at the Audubon Nature Institute, New Orleans (1996–present) beginning with original studies on determining optimal doses of porcine FSH for ovarian stimulation and uterine embryo recovery, cryopreservation, and transfer. A key early finding was the ability of cats to respond to multiple gonadotropin (porcine FSH) treatments by repeated stimulation of follicular development. With a ≥6-month interval between FSH treatments, over the past 15 years (1998–2013), we have done 1603 laparoscopic oocyte retrievals on 337 cats and recovered >38,000 mature oocytes (mean = 24.1 per laparoscopic oocyte retrieval). The limited information available on in vivo blastocyst development in the cat during the latter portion of the preimplantation period (approximately Days 8 to 12 after coitum or approximately Days 7 to 11 after ovulation) was assembled for the purpose of comparing and contrasting it with the growth, expansion, and zona functioning of in vitro-derived blastocysts. Also, results of transferring morulae and/or blastocysts into synchronous recipients are described to emphasize evidence that appears to allude to an essential role for an intact zona pellucida in successful implantation and subsequent development in the cat. Until 2003, our in vitro-derived embryos were transferred into the uterine horns of recipients to determine the feasibility of producing offspring from such primary methods as IVF, intracytoplasmic sperm injection, SCNT, and embryo cryopreservation. With the exception of SCNT embryos, pregnancy rates were satisfactory, but embryo survival rates were not. Subsequently, after finding that SCNT embryo survival rate could be improved using laparoscopic transfer of early cleavage stage embryos into the oviduct, we applied the technique to embryos derived using IVF with sex-sorted sperm, oocyte vitrification, and embryo cryopreservation. Overall, a pregnancy rate of 67% (14/21) has resulted. Most recently, with the oviductal embryo transfer technique, two litters of Black-Footed cat kittens have been born from intra- and interspecies transfer of cryopreserved embryos.  相似文献   

20.
The objective was to develop a simple successful porcine cryopreservation protocol that prevented contact between embryos and liquid nitrogen, avoiding potential contamination risks. In vivo-derived blastocysts were collected surgically from donor pigs, and two porcine embryo vitrification protocols (one used centrifugation to polarize intracytoplasmic lipids, whereas the other did not) were compared using the Cryologic Vitrification Method (CVM), which used solid surface vitrification. The CVM allowed embryos to be vitrified, without any contact between embryos and liquid nitrogen. Both protocols resulted in similar in vitro survival rates (90% and 94%) and cell number (89 ± 5 and 99 ± 5) after 48 h in vitro culture of vitrified and warmed blastocysts. The protocol that did not use centrifugation was selected for continued use. To protect vitrified embryos from contact with liquid nitrogen and potential contamination during storage, a sealed outer container was developed. Use of this sealed outer container did not affect in vitro survival of cryopreserved blastocysts. In vivo blastocysts (n = 151) were collected, vitrified, and stored using the selected protocol and sealed container. These embryos were subsequently warmed and transferred to six recipients; five became pregnant and farrowed a total of 26 piglets. This embryo vitrification method allowed porcine embryos to be successfully vitrified and stored without any contact with liquid nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号