首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To determine possible causes of reported differences between developmental competence of oocytes isolated from prepubertal (10- to 14-week-old calves) and adult cows, three parameters were analysed, comparatively, during in vitro maturation (IVM): (1) oocyte diameter, (2) oocyte energy metabolism, and (3) protein synthesis of oocytes and cumulus cells. Cumulus-oocyte complexes were isolated from follicles of 3–5 mm in diameter in both age groups. Mean oocyte diameter was smaller (P < 0.02) in calves than in cows (118.04 ± 1.15 versus 122.83 ± 0.74 μm). During the first 3 hr of IVM, calf oocytes metabolised glutamine and pyruvate at lower rates than adult oocytes, but after 24 hr of culture, both molecules were metabolised at the same rate as for adult oocytes. A significant decrease in protein synthesis, as measured by [35S]methionine and [35S]cysteine incorporation was recorded after 9 hr of IVM in calf oocytes, while in adult oocytes a significant decrease in protein synthesis was detected only after 24 hr. After the first 3 hr of maturation, proteins of 130, 26, and 24 kDa were more abundant in adult than in calf oocytes, while a protein of 55 kDa was more visible in calf than in adult oocytes. At the same time, among proteins newly synthesised by cumulus cells, molecules of 405, 146, 101, and 77 kDa were more abundant in adults than in calves. In conclusion, calf oocytes and cumulus cells showed several differences when compared with their adult counterparts, which are consistent with their reported lower developmental competence. Mol. Reprod. Dev. 49:168–175, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
The aim of this study was to evaluate mitochondrial distribution during in vitro maturation (at 0, 15, 20, and 27 hr of IVM) and fertilization of prepubertal goat oocytes compared to mitochondrial distribution of ovulated and in vitro fertilized oocytes from adult goats. Oocytes from prepubertal goats were recovered from a slaughterhouse and were matured in M199 with hormones and serum for 27 hr. Ovulated oocytes were collected from gonadotrophin-treated Murciana goats. Frozen-thawed spermatozoa were selected by centrifugation in Percoll gradient and were capacitated in DMH with 20% steer serum for 1 hr. Ovulated and IVM-oocytes were inseminated in DMH medium with steer serum and calcium lactate for 20 hr. Oocytes and presumptive zygotes were stained with Mitotraker Green FM and observed under a confocal laser scanning microscope. Ultrastructural morphology of oocytes and presumptive zygotes were analyzed by transmission electron microscopy (TEM). Prepubertal goat oocytes at germinal vesicle stage (GV) presented mitochondria localized in the cortical and perinuclear region. IVM-oocytes at metaphase II presented mitochondria peripheral polarized to the region opposite were the metaphase spindle is positioned and within the polar body. Ovulated oocytes presented peripheral mitochondria distribution and mitochondrial aggregation around the MII spindle. At 20 hr post-insemination, mitochondria were distributed around the two synchronous pronuclei (2PN rpar; in zygotes ovulated oocytes whereas in prepubertal 2PN-zygotes mitochondria presented a peripheral polarized distribution. Images by TEM detected that immature prepubertal goat oocytes that are less electrodense and present fewer cristae than in vitro matured prepubertal goat oocytes; these are characterized by being associated to swollen vesicles. Mol. Reprod. Dev. 73: 617-626, 2006 (c) 2006 Wiley-Liss, Inc.  相似文献   

4.
This study was conducted to evaluate the effect of oxygen tension during IVM and/or IVC on developmental competence of porcine follicular oocytes. Prospective, randomized experiments were designed, and oocytes were matured, inseminated and cultured in vitro in the designated condition. In experiment 1, either high (20%) or low (7%) oxygen tension was used for IVM. The high oxygen significantly improved blastocyst formation (23% versus 13%; P<0.01) after IVF than the low oxygen. Such treatment, however, did not significantly (P>0.05) improve the rates of nuclear maturation (89% in each treatment), sperm penetration (62-72%), monospermic fertilization (56-67%), pronuclear formation (90-96%), cleavage (49-53%) and blastocyst cell number (31-32 cells). In experiment 2, the combined effect of oxygen tension during IVM and IVC of embryos was evaluated by a 2 x 2 factorial arrangement. Again, the high oxygen tension during IVM supported blastocyst formation more efficiently (P<0.01) than the low oxygen, and this was independent of oxygen tension during IVC (26-28% versus 15-16%). In oocytes matured under the high oxygen, a tendency to increase blastomere number (P=0.0630) was found, when the low oxygen was used for IVC after insemination (39-45 cells/blastocyst). In conclusion, the use of high oxygen tension (20% maintained by exposure to 5% CO2 in air) for IVM of porcine oocytes promoted blastocyst formation in vitro.  相似文献   

5.
6.
In vitro maturation and fertilization of prepubertal goat oocytes   总被引:3,自引:0,他引:3  
The aim of this work was to study the IVM-IVF of prepubertal goat oocytes collected from a slaughterhouse as an alternative source of oocytes to those of FSH-primed adult goats. In Experiment 1, IVM of prepubertal goat oocytes in co-culture with granulosa cells were compared with IVM in 50 microl microdrops of medium. There was no significant difference in the percentage of maturation (72.0 vs 76.9%) between the 2 groups. In Experiment 2, a low percentage of normal fertilization (24.4%) was observed for prepubertal goat oocytes matured with granulosa cells from prepubertal goats. This result was significantly lower than that obtained for ovulated (62.2%) or in vitro-matured (48.7%) oocytes from adult goats. There were no significant differences with respect to the oocytes from adult goats matured in vitro when prepubertal goat oocytes were cultured with adult goat granulosa cells (33.3%) or in microdrops (29.7%). No differences were observed among the treatments in the percentage of oocytes showing evidence of fertilization (normal fertilization + abnormal fertilization + polyspermy). In Experiment 3, it was shown that there were no differences in the percentage of normally fertilized oocytes after in vitro maturation in microdrops containing oocytes with 1 to 2 and 3 or more complete layers of cumulus cells (32.1 and 33.3% respectively). In conclusion, the ovaries of prepubertal slaughterhouse goats were found to be an economical alternative for an abundant source of oocytes for IVM-IVF research. In vitro maturation of oocytes in microdrops yielded maturation and fertilization rates comparable to those obtained with oocytes from FSH-primed adult goats. Moreover, similar maturation and fertilization rates were obtained using oocytes with 1 to 2 layers or 3 or more layers of cumulus cells.  相似文献   

7.
New strategies were proposed to improve the developmental competence of calf oocytes through in vitro technologies. Cumulus-oocyte complexes were first prematured for 24 h in the presence of meiosis inhibitors. Both Roscovitine alone (50 microM) or in combination with Butyrolactone-I (12.5 microM Rosco+6.25 microM BL-I) prevented the progression of meiosis. Their effect on nuclear maturation was reversible after a further 17 or 24 h maturation step. However, a dramatic decrease in embryo development was observed after fertilization (abattoir oocytes: 4-9% blastocyst rate versus 14-17% for control embryos). Similar results were obtained with oocytes collected by Ovum Pick Up from living donors. No pregnancy was obtained after single transfer of two blastocysts obtained from prematured oocytes (0/2 versus 4/12 for control embryos). Adding low concentrations (1, 3 or 10 microM) of follicular fluid-meiosis activating sterol (FF-MAS) during the maturation step had a beneficial effect on nuclear maturation (73-86% metaphase II versus 58% for control oocytes). However, subsequent embryo development was not improved. Enriching the maturation medium, namely with hormones, growth factors and precursors of glutathione, induced a sixfold increase in glutathione in the oocyte and had a beneficial effect on embryo development (38% increase in blastocyst rate). In conclusion, in opposition to the results reported with adult oocytes, prematuring calf oocytes had a negative impact on their developmental potential. Although FF-MAS improved nuclear maturation, its addition in the maturation medium did not increase embryo development. However, enriching the maturation medium had a positive effect on embryo development, indicating that cytoplasmic maturation was improved.  相似文献   

8.
The effects of ammonium in a chemically defined maturation medium on oocyte nuclear maturation and subsequent embryonic development of pigs after in vitro fertilization (IVF) and parthenogenetic activation (PA) were examined. Cumulus–oocyte complexes were matured in Purdue Porcine Medium (PPM) supplemented with 0 mM, 0.02 mM, 0.2 mM, 2 mM, or 20 mM ammonium chloride, or TCM199 with 10% porcine follicle fluid (TCM + pFF; positive control) at 38.7 °C in 7% CO2 in air for 40–44 h. No significant difference (P > 0.05) in nuclear maturation was found between oocytes matured in TCM + pFF or PPM with 0 mM, 0.02 mM and 0.2 mM ammonium chloride. However, nuclear maturation was decreased (P < 0.05) in oocytes matured in PPM with 2 mM or 20 mM ammonium. After IVF, oocytes matured in PPM with 20 mM ammonium resulted in embryos with reduced (P < 0.05) embryonic cleavage and blastocyst development than all other treatment groups. After PA, oocytes matured in PPM with 20 mM ammonium resulted in embryos with lesser (P < 0.05) embryonic cleavage compared to TCM + pFF. However, PA embryos derived from oocytes matured in PPM with both 2 mM and 20 mM ammonium had reduced (P < 0.05) blastocyst development compared with TCM + pFF. These results demonstrate the detrimental effect of ammonium during in vitro oocyte maturation on nuclear progression to metaphase II. Additionally, the presence of ammonium during in vitro maturation negatively influences subsequent embryonic development, although PA embryos appear to be more sensitive to the negative effects of ammonium during oocyte maturation than do IVF embryos.  相似文献   

9.
The aim of this present study was to compare the kinetics of nuclear maturation between calf and cow oocytes in order to determine if there are differences between the 2 groups which could explain their disparate developmental capacity. The constitutive and neosynthetic protein patterns of cow and calf oocytes and of their corresponding cumulus cells were also compared during in vitro maturation. A total of 397 calf oocytes and 406 cow oocytes was matured in M199 + 10 ng/mL EGF. The first group of oocytes (n = 30) was immediately fixed and stained after removal from the follicle, and represent 0 h. The remaining oocytes were removed from the maturation medium at 4, 8, 12, 16, 20 and 24 h respectively. Half were denuded, fixed and stained for nuclear status; while the remainder were radiolabeled with methionine-(35S). Immediately after isolation, all the oocytes were at the GV stage. By 8 h, GVBD had occurred in most oocytes (calf: 97%; cow: 100%) and some had reached pro-metaphase I (calf: 49%; cow: 51%). By 12 h, most of the oocytes were at metaphase I (calf: 84%; cow: 94%). By 16 h, 54% of calf oocytes had reached telophase I or beyond compared with 71% of cow oocytes. This difference between the 2 groups became significant by 20 h, with 89% of cow oocytes (P < 0.05) at metaphase II and 71% of calf oocytes. By 24 h of culture, GVBD had occurred in all cases. Most oocytes completed meiosis I and were arrested at metaphase II with the first polar body extruded (calf: 72%; cow: 86%). No differences were noted in the constitutive and the neosynthetic protein profiles of cumulus cells in relation to the age of animal. Changes in neosynthetic protein patterns were observed both in cow and calf cumulus during IVM, and several proteins showed stage-specific synthesis. For the constitutive protein patterns of cow and calf oocytes, there were quantitative (38 and 40 kD) and qualitative (4, 10, 16, 17, 24, 25 and 26 kD) differences between the 2 groups. Only a few differences were observed in neosynthetic proteins between cow and calf oocytes, but there were changes in relation to nuclear status both in cow and calf oocytes. In conclusion, the difference in developmental capacity between cow and calf oocytes may be explained by a difference in the kinetics of nuclear maturation, which was significant at 20 h of culture (with 89% of cow oocytes at metaphase II and 71% of calf oocytes). At the biochemical level, our results indicate that nuclear progression during in vitro maturation of bovine oocytes is linked to changes in protein synthesis by the oocyte itself, while cumulus protein synthesis may either stimulate or modulate the process of oocyte maturation.  相似文献   

10.
11.
In this study we evaluated nuclear and ooplasmic maturation of prepuberal calf oocytes to determine a possible cause for their low developmental competency. Calf oocytes resumed meiosis and arrested at the MII stage at rates similar to that of adult animals; however, zygotes derived from calf oocytes cleaved and developed at significantly lower rates. Ooplasmic maturation was assessed during oocyte maturation and fertilization. Transmission electron microscopy revealed that a majority of calf oocytes exhibited some delay in organelle migration and redistribution following maturation. Immunofluorescence microscopy showed that following IVF, a higher percentage of calf oocytes had abnormal chromatin and microtubule configurations than those of adult cattle. These anomalies were characterized by delayed formation of sperm aster and asynchronous pronuclear formation. Microfluorometry was used to characterize the Ca2+ responses of calf oocytes to the addition of agonists or after IVF. The addition of thimerosal demonstrated the presence of Ca2+ stores in calf oocytes. Injection of near threshold concentrations of inositol 1,4,5-trisphosphate (InsP3), used to test the sensitivity of the InsP3R, released significantly less Ca2+ in calf than in cow oocytes, whereas higher concentrations of InsP3 (500 μM) released maximal [Ca2+]i in both oocytes. These results suggested that the Ca2+ content of intracellular stores was similar, but the sensitivity of the InsP3R may be different. Following insemination, calf oocytes exhibiting [Ca2+]i oscillations displayed comparable amplitude and intervals to cow oocytes; however, a significantly higher number of fertilized calf oocytes failed to show oscillations. Our findings suggest that the low developmental competence of calf oocytes can be attributed, at least in part, to incomplete or delayed ooplasmic maturation. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Success of in vitro maturation (IVM) and production of bovine embryos as related to aspects of follicle source and oocyte size were evaluated. First, it was determined that bovine oocytes continue growing in all follicular sizes studied, including >1- to 15-mm follicles. Populations of oocytes were collected from surface visible (peripheral) and cortical follicles from the same ovaries. When the number of oocytes from both peripheral and cortical follicles was combined, the yield of oocytes was approximately double that collected from 1 ovarian site alone. Oocytes from cortical follicles were smaller than those from the surface population, and the smaller cortical oocytes had a lower potential for both meiotic maturation and embryo development Only cortical oocytes with the largest diameters underwent IVM and subsequently developed to blastocysts at rates comparable to oocytes from peripheral follicles. As the diameter of the oocytes recovered from peripheral follicles increased, so did their developmental potential. When the stage of the estrous cycle was observed, it was found to have no effect on developmental potential. Finally, oocytes which extruded polar bodies at an earlier time during maturation were, on average, larger than those which extruded polar bodies later. The results serve a practical purpose in assisting selection of oocytes capable of developing into blastocysts and they give useful correlates of oocyte competencies based on knowledge of follicle source and oocyte stage.  相似文献   

13.
The in vitro ability between fetal and cow oocytes to resume meiosis and progression to metaphase-II (M-II) was compared. Cumulus oocyte complexes (COCs) were harvested from 2 to 6 mm follicles from ovaries of 7.5 month to term fetuses and adult cows. Cumulus cells were removed using 3 mg/ml hyaluronidase and repeated pipetting. Denuded oocytes were fixed in 3% glutaraldehyde, stained with DAPI and evaluated under fluorescent microscopy for nuclear status before in vitro maturation (IVM). COCs from fetal and adult ovaries were also matured in 200 microl droplets of medium 199 supplemented with 10 microg/ml FSH, 10/ml LH, 1.5 microg/ml estradiol, 75 microg/ml streptomycin, 100 IU/ml penicillin, 10 mM hepes and 10% FBS for 24 h at 39 degrees C and 5% CO(2). Matured oocytes were fixed, stained and evaluated as explained above for nuclear status namely stage of germinal vesicle (GV) development and subsequent meiotic competence. Data were analyzed using chi-square analysis. The majority of fetal oocytes (P<0.05) before IVM were at GV stages GV-I (27.7%), GV-II (37.6%) and GV-V (22.8%) compared to cow oocytes, which were at GV stages IV (28.3%) and V (46.7%). After IVM, fewer fetal oocytes were at earlier stages of GV development and majority (P<0.05) were at GV-V (24.0%), premetaphase (17.4%) and metaphase-I (M-I: 7.2%) stages. However, after IVM, more cow oocytes matured to M-II than did fetal oocytes (93.7% versus 26.9%; P<0.05). In conclusion, fetal oocytes do not mature in vitro as well as cow oocytes. Our findings suggest that the low meiotic competence of fetal oocytes can be attributed to their being at earlier stages of GV development before IVM.  相似文献   

14.
15.
The present study examined the effect of low culture temperature during in vitro maturation (IVM) of pig oocytes on their nuclear maturation, fertilisation and subsequent embryo development. In experiment 1, oocytes were cultured at 35 or 39 degrees C for 44 h in modified tissue culture medium 199 supplemented with 10 ng/ml epidermal growth factor, 0.57 mM cysteine, 75 microg/ml potassium penicillin G, 50 microg/ml streptomycin sulphate, 0.5 microg/ml LH and 0.5 microg/ml FSH to examine the nuclear maturation status. In experiment 2, oocytes were cultured at 35 degrees C for 44 or 68 h and nuclear maturation was examined. In experiment 3, oocytes matured for 44 or 68 h at 39 degrees C and for 68 h at 35 degrees C were co-incubated with frozen-thawed spermatozoa for 5-6 h. Putative embryos were transferred into North Carolina State University (NCSU) 23 medium containing 0.4% bovine serum albumin. At 12 h after insemination, some oocytes were fixed to examine the fertilisation rate and the remaining embryos were examined at 48 and 144 h for cleavage and blastocyst formation rate, respectively. Compared with 39 degrees C, culture of oocytes at 35 degrees C for 44 h significantly (p < 0.05) reduced the metaphase II (M II) rate (79% vs 12%). However, extension of culture time to 68 h at 35 degrees C significantly increased (p < 0.05) the M II rate (7% vs 58%). In experiment 3, compared with other groups, fewer (p < 0.05) oocytes reached M II when cultured at 35 degrees C for 68 h (69-81% vs 49%). Extension of culture duration to 68 h at 39 degrees C stimulated spontaneous activation (28%) of oocytes. No difference in cleavage rates was observed among different groups. Compared with oocytes matured for 44 h at 39 degrees C (31%), the proportion of blastocysts obtained was low (p < 0.05) for oocytes matured at 35 degrees C (13%) or 39 degrees C (3%) for 68 h. The results indicate that lower culture temperature can delay nuclear maturation of pig oocytes. However, extension of culture time can stimulate nuclear maturation and these oocytes are capable of fertilisation and development to the blastocyst stage at moderate rates.  相似文献   

16.
17.
18.
Various pathological stimuli such as radiation, environmental toxicants, oxidative stress, and heat shock can initiate apoptosis in mammalian oocytes. Experiments were performed to examine whether apoptosis mediated by group II caspases is the cause for disruption of oocyte function by heat shock applied during maturation in cattle. Bovine cumulus-oocyte complexes (COCs) were cultured at 38.5, 40, or 41 degrees C for the first 12 h of maturation. Incubation during the last 10 h of maturation, fertilization, and embryonic development were at 38.5 degrees C and 5% (v/v) CO2 for all treatments. In the first experiment, exposure of COCs to thermal stress during the first 12 h of maturation reduced cleavage rate and the number of oocytes developing to the blastocyst stage. In the second experiment, a higher percentage of TUNEL-positive oocytes was noted at the end of maturation for oocytes matured at 40 and 41 degrees C than for those at 38.5 degrees C. In addition, the distribution of oocytes classified as having high (>25 intensity units), medium (15-25 intensity units), and low (<15 intensity units) caspase activity was affected by treatment, with a greater proportion of heat-shocked oocytes having medium or high activity. In the third experiment, COCs were placed in maturation medium with vehicle (0.5% [v/v] DMSO) or 200 nM z-DEVD-fmk, an inhibitor of group II caspases. The COCs were matured at 38.5 or 41 degrees C, fertilized and cultured for 8 days. The inhibitor blocked the effect of heat shock on cleavage rate and the percentage of oocytes and cleaved embryos developing to the blastocyst stage. In conclusion, heat shock during oocyte maturation can promote an apoptotic response mediated by group II caspases, which, in turn, leads to disruption of the oocyte's capacity to support early embryonic development following fertilization.  相似文献   

19.
The aim of this study was to analyze the relationship between oocyte diameter, meiotic and embryo developmental competence and the expression of the catalytic subunit of MPF, the p34(cdc2), at mRNA, RNA and protein level, as well as its kinase activity, in prepubertal (1-2 months old) goat oocytes. MPF is the main meiotic regulator and a possible regulator of cytoplasmic maturation; therefore, it could be a key factor in understanding the differences between competent and incompetent oocytes. Oocytes were classified according to oocyte diameter in four categories: <110, 110-125, 125-135 and >135 microm and matured, fertilized and cultured in vitro. The p34(cdc2) was analyzed in oocytes at the time of collection (0 h) and after 27 h of IVM (27 h) in each of the oocyte diameter categories. The oocyte diameter was positively related to the percentage of oocytes at MII after IVM (0, 20.7, 58 and 78%, respectively) and the percentage of blastocysts obtained at 8 days postinsemination (0, 0, 1.95 and 12.5%, respectively). The expression of RNA and mRNA p34(cdc2) did not vary between oocyte diameters at 0 and 27h. Protein expression of p34(cdc2) increased in each oocyte category after 27 h of maturation. MPF activity among diameter groups did not vary at 0h but after IVM there was a clear and statistically significant increase of MPF activity in the biggest oocytes.  相似文献   

20.
Dey SR  Deb GK  Ha AN  Lee JI  Bang JI  Lee KL  Kong IK 《Theriogenology》2012,77(6):1064-1077
The present study examined the effect of coculturing cumulus oocyte complexes (COCs) and denuded oocytes (DOs) during in vitro maturation (IVM) on nuclear and cytoplasmic maturation, zona pellucida (ZP) hardening, the pattern of fertilization and glutathione peroxidase 1 (GPX1) gene expression in the oocyte. Furthermore, the rate of embryonic development and the quality of blastocysts were examined for both COCs and DOs. Three IVM conditions were studied: 1) the coculture of 12 COCs and 60 DOs, 2) COC control with 12 COCs, and 3) DO control with 60 DOs. The IVM was performed in a 120-μl droplet of TCM199-based IVM medium. Following IVM, in vitro fertilization (IVF) and in vitro culture (IVC) were conducted separately for the COCs and DOs (DO coculture) from the IVM coculture group. Coculturing COCs and DOs increased the percentage of oocytes reaching the blastocyst stage and the total number of cells per blastocyst in both the COC coculture (44.4 ± 8.6 vs 26.7 ± 9.7%, P < 0.01, and 137.9 ± 24.9 vs 121.7 ± 21.1, P < 0.05) and the DO coculture (20.5 ± 5.0 vs 11.1 ± 2.5%, P < 0.01, and 121.9 ± 27.5 vs 112.3 ± 33.2, P < 0.05) compared to their respective control groups. The synergistic effects of coculturing were detected as increased nuclear and cytoplasmic maturation, the prevention of ZP hardening, increased monospermic fertilization and increased expression of GPX1 in the oocytes in response to endogenous oocyte-secreted factors. In conclusion, coculturing COCs and DOs may be an effective culture system for both intact COCs and immature DOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号